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Abstract: Virgin coconut oil (VCO) is produced from fresh mature coconut meat without the use of 
chemicals or high heat. VCO can be made using three processes: fermentation, centrifuge, and ex-
peller. To determine quality, it is important to be able to differentiate control VCO (fresh) from old 
VCO, refined bleached and deodorized coconut oil (RBDCO), and VCO which has been adulterated 
with RBDCO. Differentiating these types of samples has remained a challenge because of their 
chemical similarity. This study investigated the ability of 13C NMR and multivariate analysis to 
differentiate these different coconut oil samples. The methodology used the standard 13C NMR 
pulse sequence with broadband 1H decoupling with dioxane as the internal standard (IS). After pre-
processing of the spectra (alignment, bucketing/binning, normalization with respect to dioxane IS 
peak), untargeted multivariate analyses, both unsupervised and supervised, were done on the bins 
of the 13C peaks. Principal components analysis (PCA), a linear unsupervised method, was able to 
differentiate control VCO (n = 57) from RBDCO (n = 21), adulterated VCO (n = 9), and old VCO (n = 
11). Partial least squares–discriminant analysis (PLS–DA) was used as the supervised linear binary 
classifier. Using overall accuracy and AUC-ROC curves (by 100 cross validation and single valida-
tion using manual holdout), the supervised dataset with an optimized model gave performances 
that were 99%, 95%, and 80% improved in differentiating control VCO vs. RBDCO, old VCO, and 
adulterated VCO (one vs. one), respectively. Predictive ability (Q2 < 0.20) and overall accuracy 
(<0.80) were poor compared to the previous models for binary classifier models (one vs. rest) to 
differentiate among the three VCO processes. This may be due to the variations in production con-
ditions and methods that different VCO producers use. We conclude that 13C NMR combined with 
linear techniques can be used to accurately differentiate fresh VCO from RBDCO, old VCO, and 
adulterated VCO. 

Keywords: virgin coconut oil; 13C NMR spectroscopy; multivariate analysis; ROC curves 
 

1. Introduction 
Virgin coconut oil (VCO) is an oil that is recognized as a functional food which has 

been gaining popularity worldwide. VCO is defined as the oil that is obtained directly 
from fresh mature coconut meat without the use of chemicals and high heat [1] and can 
be produced using three main processes: fermentation, centrifuge, and expeller. In the 
fermentation and centrifuge processes, coconut milk is prepared from the fresh coconut 
meat. The fermentation process takes advantage of the presence of natural microorgan-
isms that release lipase and other demulsifiers to destabilize the emulsion and separate 
the coconut oil layer. The crude coconut oil is filtered, dried, and is sometimes subjected 
to centrifugation. In the centrifuge process, the coconut milk is centrifuged to directly 
separate the oil from the aqueous layer. Many producers use a three-pass centrifuge sys-
tem. The expeller process passes the coconut meat directly through an expeller press to 
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squeeze out the oil [2]. In contrast, coconut oil that is used for frying is produced from 
copra and is refined, bleached, and deodorized and is referred to here as RBDCO. 

Because VCO and RBDCO have similar physio-chemical characteristics, it is difficult 
to distinguish between them using classical techniques, and it is even more difficult to 
detect the adulteration of VCO with RBDCO. The reported methods of detecting adulter-
ation using a different vegetable oil as an adulterant are inadequate for this purpose. Fou-
rier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) 
have been used to differentiate VCO from non-coconut oil samples, but these have not 
been applied to the adulteration of VCO with RBDCO [3,4]. 

NMR is a nondestructive, unbiased method of analyzing organic compounds. Com-
paring 1H and 13C NMR, the latter has a wider chemical shift range and gives singlets 
resulting in simpler spectra with less problems related to overlapping peaks in compari-
son to spectra across different magnetic field strengths. 13C NMR is also less susceptible 
to solvent and temperature effects. As 13C NMR is less sensitive than 1H NMR, it requires 
a longer acquisition time. Although broadband 1H-decoupled 13C NMR cannot be inte-
grated, 13C NMR analysis is reproducible and can be used for the profiling of organic 
samples. Quantitative 13C NMR analysis can be done using an inverse-gated decoupling 
pulse sequence, but this requires long recycle delays. Although the use of relaxation 
agents may shorten the repetition time when using quantitative 13C NMR, the 13C NMR 
profile is suitable only for chemometric pattern recognition and untargeted multivariate 
analysis, but not for targeted quantification [5]. 

The statistical pipeline follows a typical multivariate method used in metabolomics 
[6,7]. 13C NMR profiles were pre-processed, aligned, bucketed, normalized, and auto-
scaled. Linear methods were applied to the data. Exploratory unsupervised analysis, such 
as principal component analysis (PCA), was used to infer patterns and clustering within 
the dataset. Binary classifiers were developed for the better evaluation of model perfor-
mance compared to multi-class classifiers in supervised analysis. Partial least squares–
discriminant analysis (PLS–DA), a linear method, was then used for supervised analysis. 
The suitability of using a PLS–DA model (as it tends to overfit) was evaluated by the over-
all accuracy and the R2 (linear fit of training data) and Q2 (linear fit of predicted data/pre-
diction performance on new data) parameters. The resulting models were then optimized 
for number of PLS–DA variables and a number of features by being internally cross-vali-
dated by random class assignments, manually single-validated using a manual holdout, 
and evaluated on ROC-based performance and predictive ability [8]. 

Receiver operating characteristics (ROC) are a diagnostic tool used to discriminate 
two samples based on a binary classifier system and a discrimination threshold for organ-
izing classifiers and visualizing their performance. An ROC graph is a plot used to visu-
alize the performance of the differentiation. The ROC curve plots the true positive rate 
(sensitivity) on the y axis against the false-positive rate (1-specificity) on the x axis. The 
area under the curve (AUC) of an ROC curve is used to quantify the performance of a 
binary classifier, a normal or control versus an abnormal or not controlled characteristic. 
Both the ROC curve and its corresponding AUC are functions of sensitivity and specificity 
of a prediction model. A perfect test will have an AUC value of 1.0, whereas a random 
chance will have a value of 0.5. In interpreting the AUC values we used the following: 1.0 
is a perfect test, 0.9–0.99 is an excellent test, 0.8–0.89 is a good test, 0.7–0.79 is a fair test, 
0.51–0.69 is a poor test, and 0.5 is of no value or is an unusable test [9].  

The predictive performance of a model can be measured by permutation testing to 
determine whether it is statistically significant or not. A p-value < 0.05 means that given a 
randomly permuted outcome variable, there is less than 5% chance that a model of similar 
performance to the ‘‘true’’ non-permuted model will be produced. 

2. Research Objectives 
The goal of this research is to develop a 13C NMR method that can be used to differ-

entiate VCO from RBDCO, from VCO adulterated with RBDCO, and old VCO (VCO 
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which is beyond the shelf life of two years). Additionally, we also investigated whether 
this method will be able to differentiate VCO according to the type of production process, 
that is, fermentation, centrifuge, or expeller. 

3. Materials and Methods 
3.1. Oil Samples 

Total VCO samples (n = 98) were divided into two groups: sample types—control 
VCO (n = 57) and not control VCO (n = 41). The control VCO (n = 57) comprised of two 
VCO oil types—the observed (n = 42), and the submitted (n = 15) samples. The observed 
and the submitted samples were acquired from the VCO producers of the Philippines who 
committed to participate in the study. Three to four manufacturers per process (fermen-
tation, centrifuge, and expeller) were enrolled. Each manufacturer provided two oil type 
samples: observed and submitted. The observed samples were gathered by the research-
ers while observing the full VCO production process. The submitted samples were pro-
duced unobserved by the researchers. The observed samples constituted the training sam-
ples, while the submitted samples were the validation samples. 

The sample type not control VCO (n = 41) consisted of the following oil types: old 
VCO (n = 11), adulterated VCO (n = 9), and RBDCO (n = 21). The old/degraded VCO sam-
ples included samples which were subjected to accelerated degradation at 40 °C for 6 
months and samples which were over 2 years old. The adulterated VCO samples were 
composed of fermentation, centrifuge, and expeller samples that were adulterated with 
an RBDCO sample by 25%, 50%, and 75%. 

3.2. Chemicals, Reagents, and Sample Preparation 
Deuterated chloroform (CDCl3) with 0.05% v/v trimethyl silane (TMS) was used as 

the NMR solvent (cat# DLM-7TB-100S, Cambridge Isotope Laboratories, Inc.). 1,4-dioxane 
(cat# 1.09671, Merck ACS, ISO grade) was used as the internal standard (IS). 

Approximately 350 µL of the oil sample was transferred into a 5 mm Wilmad High 
Throughput NMR tube (WG-1000-8-50) and about 230 µL of the CDCl3 solvent containing 
2.9% w/w 1,4-dioxane was added. 1,4-dioxane was added as the IS for normalizing the 
metabolite bucket integrations. The mixture was shaken to homogenize the sample. 

3.3. Instrumentation and Experimental Parameters 
An Avance Neo 400 nuclear magnetic resonance (NMR) spectrometer (Bruker Bio-

spin) was used operating at 100.097 MHz 13C. A standard Bruker 13C pulse sequence was 
used (C13CPD/zgpg30) with 64k (65,536) acquisition points, 4k (4096) scans, 1.38 s acqui-
sition time, spectral width from −18.6 ppm to 219.3 ppm (23,809.523 Hz) with autogain 
settings and run at VT = 300 Kelvin. 

3.4. Data Processing 
Processed NMR spectra used standard automatic Bruker Topspin 4.0.7 13C post-pro-

cessing third party packages, and statistical frameworks of the R Statistical software were 
used for the batch processing of spectra and in the unsupervised and supervised analyses. 
NMRProcFlow [10] was used for batch processing of peak shifting, spectral alignment, 
and variable bucketing. MetaboAnalyst 4.0 [11] was used for the data normalization and 
statistical analyses (untargeted, multivariate; unsupervised and supervised).  

4. Results 
4.1. Unsupervised Analysis  

Preliminary exploratory unsupervised analyses were done in the context of the 
research objectives. Using 13C NMR untargeted profiling and linear methods: can we 
differentiate control VCO samples from RBDCO samples and other VCO samples not 
considered control? Can we differentiate by VCO process? 
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Binary classifiers were designed so that model performance can be easily evaluated 
by ROC curves. These binary classifiers were then used in supervised analyses and on the 
test samples: control vs. not control VCO (one vs. one); control VCO vs. RBDCO; control 
VCO vs. old VCO; and control VCO vs. adulterated VCO. Control VCO samples were 
used for the VCO process binary classifiers (one vs. rest): fermented VCO vs. not fer-
mented VCO; centrifuged VCO vs. not centrifuged VCO; and expeller VCO vs. not expel-
ler VCO. 

2D unsupervised exploratory PCA plots for the binary classifiers for control VCO vs. 
not control VCO are shown in Figure 1, where control VCO vs. RBDCO is clearly sepa-
rated. Some overlap is seen for control VCO vs. old VCO. There is significant overlap and 
no clear separation seen for the binary classifiers for the VCO processes. 

 
Figure 1. 2D unsupervised exploratory PCA plots for the binary classifiers. 

4.2. Supervised Analysis 
PLS–DA performance of control VCO vs. RBDCO indicates it is a perfect model and 

statistically significant (Figure 2). The optimal Q2 is determined to be four PLS–DA com-
ponents with overall accuracy of about 1. Preliminary permutation tests indicate a p-value 
< 0.001 (0/1000 permutations). Monte Carlo cross validation (MCCV) indicates the model 
is a perfect classifier with most of the AUC for the ROC curves being 1. We get the same 
performance for a model built with buckets with AUC > 0.99 for 100 CV and for holdout 
data. There is good and clear separation between samples of the two classes. The predic-
tive accuracy of the assembled model using a permutation test with 1000 permutations is 
statistically significant, p < 0.001.  

The PLS–DA classifiers for the control VCO processes (fermentation vs. not fermen-
tation, centrifuge vs. not centrifuge, and expeller vs. not expeller) indicated poor model 
performance, with some having comparatively high p-values.  
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Figure 2. PLS–DA performance of control virgin coconut oil (VCO) vs. refined bleached and deo-
dorized coconut oil (RBDCO) indicates it is a perfect model and statistically significant. The opti-
mal number of components or PLS latent variables is determined to be 4 denoted with a * in sub-
plot (a). ROC curves for 100 CV (blue trace) and Single Validation (violet trace) are both equal to 1 
as shown in subplot (d). Solid circle markers indicate the RBDCO class, the outline is for Control 
VCO class, holdout samples used in single validation are highlighted in red in subplot (e). 

5. Discussion 
Based on the unsupervised analyses, we expect that differentiating control VCO from 

RBDCO, from VCO adulterated with RBDCO, and from old VCO samples is feasible, but 
differentiating by VCO process is not feasible. The control VCO vs. RBDCO classifier is 
essentially a perfect model and very highly statistically significant. The control VCO vs. 
old VCO classifier may also be considered an excellent model, and marginally close to the 
cutoff of p-value = 0.05. This may be improved with more old VCO samples.  

The control VCO vs. adulterated VCO classifier is a mixed bag. Although the model 
performance may be considered good from a practical application, it was not statistically 
significant, meaning that there may be a significant number of models with random label-
ing assignments that will perform better than the optimized model. We hope to determine 
in future studies if the statistical significance of the model can be improved with more 
samples of adulterated VCO. 

6. Summary and Conclusions 
The use of 13C NMR and multivariate linear statistical methods were sufficient to 

discriminate the following: control VCO from RBDCO; control VCO from old VCO; and 
control VCO from VCO adulterated with RBDCO. The accuracy of discriminating VCO 
samples produced by different processes proved to be inadequate. Figure 3 summarizes 
the results and conclusions. 
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Figure 3. Graphical summary of the results and conclusions. 
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