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Abstract: The aims of this study are to quantify the effects of key properties of rainfall time series 
on the hydrologic design of sustainable urban drainage systems (SUDS) to test a method for their 
estimation from daily time series and to quantify their uncertainty. Several typologies of SUDS 
infrastructures are designed to achieve a target treatment capacity. This target capacity is usually 
defined according to two methods: treating a percentage of the total volume of rainfall (50, 80, 90, 
95, 99%) or treating a percentage of the total number of rainfall events (50, 80, 90, 95, 99%). We 
considered the city of Madrid as the case study, compiling 58 years of observed data (10-
minutetime step) and aggregating to daily time series. We obtained the design parameters from 
the full resolution dataset and for different storm thresholds (0, 1 and 2 mm). Second, we determined 
the design parameters from the aggregated daily time series by applying a temporal stochastic 
rainfall generator model (RainSimV3). Finally, we estimated the model parameters from daily data 
and generated 100 series of 58 years at 10-minute time step, then compared the results. Results 
showed a good agreement compared to the 10-minute time step rainfall series. The different 
thresholds selected do not affect in a relevant way the calculation by percentage of the total volume; 
in the case of calculation by events, the threshold can vary the design volume for up to 30%. Further 
research includes the analysis of different climate locations. 

Keywords: SUDS; sustainable drainage systems; hydrologic design; stochastic rainfall generator; 
stochastic approach 
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1. Introduction 

Currently, more than half of the world population lives in urban areas and growth is expected 
[1]. Human activity on the basins induced changes on the hydrological characteristics and higher 
costs for the construction and maintenance of conventional drainage systems [2,3]. The design and 
implementation of sustainable urban drainage systems (SUDS) could contribute to mitigating this 
problem by reducing the runoff volume, peak flow, and outlet contaminants [4–6]. 

The design of urban drainage systems has traditionally been carried out from historical data or 
through design storms [7]. However, the small size of the urban watersheds and short response time 
make it necessary to consider the rainfall series at a sub-hourly time-step [8,9]. From a global 
perspective, daily time-step rainfall data is the most common available information. Different 
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downscaling methodologies have been widely studied for urban applications [10,11], but their 
application to SUDS design was not fully developed [12–16]. 

In this study, the temporal disaggregation was analyzed from daily data to 10-minute 
resolutions based on the Neyman-Scott Rectangular Pulse Method in a single-site and by using the 
RainSim V.3 model [16]. The aims of this study are to quantify the effects of key properties of rainfall 
time series on the hydrologic design of sustainable urban drainage systems (SUDS) to test a method 
for their estimation from daily time series and to quantify their uncertainty. 

2. Materials and Methods 

We analyzed the effect of rainfall design on two types of parameters commonly used to 
design SUDS: (1) those that treat a percentage of the total volume of accumulated rainfall series 
(50,80, 90, 95, 99%, and named as V50, V80, V90, V95, V99), and (2) those that treat a percentage of 
the total number of rainfall events (50, 80, 90, 95, 99%, and named as N50, N80, N90, N95, N99) 
during the analyzed rainfall series. The methodology applied was based on the stochastic generation 
of 10-minute time-step rainfall series (using the RainSimV3 model). First, we obtained the SUDS 
design parameters from the observed 10-minute rainfall series (58 years) and from aggregated daily 
rainfall time series. We estimated the parameters of the RainSimV3 model from the observed daily 
timeseries. Third, we generated 100 series of 58 years at 10-minute time step. Fourth, we validated 
the Rain Sim V3 model by comparing the intensity-duration-frequency curves (IDF) and rainfall 
frequency curves obtained from observed and simulated time series. Fifth, we calculated the SUDS 
parameters. Finally, we compared and analyzed the results. 

2.1. Case Study 

We considered the city of Madrid as the case study. We compiled 58 years of observed data (10-
minute time step, from 1941 to 1998) from the Madrid Retiro gauge station (id station: 3195). Figure 1 
shows the gauge location, centered on the city and located at an altitude of 667 m.a.s.l. (referred to the 
Alicante sea level). Madrid has a semi-arid climate with an average annual precipitation of 441 mm. 
The pluviography measurement series has a minimum appreciation of 0.2 mm. By aggregation, the 
daily data was been obtained. 

 

Figure 1. Location of the study case. Red dot indicates the rainfall gauge location. 

2.2. Stochastic Rainfall Generation 

The methodology applied was based on the stochastic generation of 10-minute time-step rainfall 
series by using the RainSimV3 model. First, we estimated the parameters of the RainSimV3 model 
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from the observed daily time series. Second, we generated 100 series of 58 years at 10-minute 
timestep. Third, we validated the model by comparing (a) the intensity-duration-frequency curves 
(IDF) obtained by the model and from observed data and from previous studies [17–21], and (b) the 
rainfall frequency curves obtained from observed and simulated time series and by accounting for 
different storm durations (10 min, 1 h and 24 h.) 

2.3. Estimation of Design Parameters (SUDS) 

To estimate the SUDS parameters, we first identified the storms from the rainfall series. As 
usually the available rainfall series are daily time-step, and the minimum inter-storm period 
considered is a day [22], we assumed independent storms with a minimum inter-storm period of 24 
h. We obtained the SUDS design parameters from the observed 10-minute rainfall series (58 years) 
and from the aggregated daily rainfall time series. We calculated the design parameters for different 
storm thresholds (0, 1, and 2 mm); that is, by considering all identified storms (threshold = 0 
mm), by considering the storms with a  total depth higher than 1 mm and 2 mm, respectively. 
For each storm threshold, we generated 100 series of 58 years at 10-minute time step and calculated 
the SUDS parameters. Finally, we compared and analyzed the results. 

3. Results and Discussion 

3.1. Stochastic Rainfall Validation 

Table 1 shows the values of the IDF curves obtained from the observed 10-minute time-series, 
the simulated series, and previous studies. Casas-Castillo et al. [17] used 5-minute rainfall series 
from1940 to 2012. AEMET [18] obtained the IDF curves by fitting the observed data (10-minute series 
from1942 to 2002) to a SQRT-ETmax. Distribution function [23]. Finally, results from the application of 
the national 5.2IC [19] are shown (rainfall values were extracted from the MAXPLU study [20]. 
Results show that the median values from the stochastic simulations (with parameters adjusted using 
observed daily data) have a good agreement compared with the results from the 10-minute data, with 
differences smaller than 10% for most of the analyzed storm durations and return periods. Moreover, 
the differences are within the 95% confidence interval estimated by the stochastic simulations. 

Table 1. Comparison of IDF curves according to different sources of data and the methods applied. 
Dur correspond to the storm duration in minutes and Tr the return period in years. Values are 
presented in mm/h. 

 Observed IDF Curve Simulated IDF Curve AEMET (2003) 
Casas-Castillo et al. 

(2016) 
5.2-IC RETIRO 

(MAXPLU) 
Dur/

Tr 
2 5 10 15 2 5 10 15 2 5 10 15 2 5 10 15 2 5 10 15 

10 35.6 49.8 59.6 65.5 37.8 55.2 67.8 74.4 34.0 52.0 65.0 71.3 38.6 55.5 68.3 75.7 35.7 47.6 55.2 59.6 
20 23.7 37.0 45.1 49.3 27.3 40.5 50.7 56.4 26.0 38.0 48.0 52.3 25.5 36.6 45.0 49.9 25.2 33.6 38.9 42.0 
30 19.1 27.7 37.3 38.2 20.6 30.0 37.2 41.8 20.0 30.0 38.0 41.7 19.6 28.1 34.6 38.4 20.3 27.1 31.4 33.8 
60 11.6 17.7 20.3 22.0 12.6 17.8 21.5 23.9 12.5 18.0 22.2 24.1 12.2 17.5 21.6 23.9 13.8 18.3 21.3 22.9 

120 7.5 10.7 12.8 16.1 7.1 10.0 12.2 13.5 7.9 10.9 13.0 14.0 7.5 10.8 13.2 14.7 9.1 12.1 14.0 15.1 
360 3.8 4.8 5.3 6.0 3.3 4.4 5.1 5.5 3.8 5.0 5.9 6.3 3.4 4.9 6.0 6.7 4.4 5.8 6.8 7.3 
720 2.3 3.0 3.3 3.5 2.2 2.8 3.3 3.6 2.4 3.1 3.6 3.8 2.1 3.0 3.6 4.0 2.7 3.5 4.1 4.4 
1440 1.4 1.8 2.2 2.3 1.4 1.8 2.1 2.3 1.5 1.9 2.2 2.3 1.2 1.8 2.2 2.4 1.6 2.1 2.4 2.6 
10 

Comparative Value[%]  

6.1 10.9 13.7 13.5 −4.6 4.5 9.0 8.8 8.3 11.5 14.5 15.5 0.2 −4.4 −7.4 −9.1 
20 15.3 9.4 12.3 14.3 9.8 2.7 6.3 6.0 7.7 −1.1 −0.3 1.1 6.4 −9.2 −13.8 −14.9 
30 8.0 8.4 −0.4 9.3 4.9 8.4 1.7 9.0 2.8 1.6 −7.4 0.4 6.5 −2.0 −15.9 −11.6 
60 8.9 0.6 5.9 8.4 8.0 1.8 9.3 9.3 5.4 −1.1 6.4 8.4 19.3 3.5 4.9 3.9 

120 −4.9 −6.5 −4.4 −16.7 5.8 2.0 1.9 −13.3 0.5 1.0 3.4 −8.9 21.9 13.2 9.7 −6.4 
360 −12.6 −9.7 −3.1 −8.8 −0.3 3.3 12.1 4.5 −10.8 1.3 14.0 11.1 15.4 19.9 29.2 21.0 
720 −4.8 −5.6 −0.6 2.3 4.7 3.3 7.6 8.0 −8.4 0.0 7.6 13.6 17.8 16.6 22.5 25.0 
1440 0.0 0.0 −4.2 0.0 7.1 5.6 0.6 0.0 −14.3 0.0 2.2 4.3 14.3 16.7 9.7 13.0 

 

100 ∙ (𝐶𝑜𝑚𝑝. . −𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑)𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
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Figure 2 shows the rainfall frequency curves (RFC) corresponding to rainfall durations of 10 
min, 1 h and 24 h respectively. Simulated RFC curves for 1 h and 24 h show an excellent agreement 
compared with their correspondent observed RFC curves (calculated from 10-minute time series). It 
should be noted that the simulated RFC curves were generated with parameters estimated from 
daily data. Thus, the proposed stochastic procedure has a good predictive capacity for extreme 
value estimation. 

 
Figure 2. Comparison of the estimated rainfall frequency curves corresponding to 10-minute storm 
duration (D, red dots), 1 h and 1 day, their corresponding stochastic simulation (red line), and 95% 
confidence bound (cyan area). 

3.2. Design Parameters Analysis (SUDS) 

3.2.1. Parameters Based on Rainfall Volume 

Figure 3 and Table 2 shows, for the different storm thresholds considered, the values and 
uncertainty of the V50, V80, V80, V90, V90, V95, and V99 derived from the 100 analyzed series. In 
addition, values obtained from the observed 10-minute and daily time series are also plotted. 
Although results show better performance of the stochastic series assuming a threshold value of 2 
mm compared with 1 mm and considering all events, the SUDS design parameters, for this case 
study, did not present high sensitivity. For V50, V80, and V90, better results were obtained for the 
stochastic approach than for daily data. Thus, starting from observed daily data, the stochastic 
approach could obtain similar SUDS design values than using observed daily data, but also estimated 
a 10-minute time-step series, very useful for SUDS design. For example, for a better estimation of 
storm characteristics as temporal distribution of storms, time among events, and maximum and 
mean rainfall intensities, among others. Finally, results from observed 10-minute time step are within 
the 95% confidence bound of the stochastic simulation. 
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Figure 3. Comparison of the SUDS parameters based on rainfall event volumes. Red line represents 
the event rainfall volume value that ensure a treatment of the 50, 80, 90, 95, and 99%  of the 
accumulated rainfall depth within the analyzed period (58 years) at 10-minute time step. Green line 
corresponds to daily time step, blue lines correspond to the stochastic simulations at 10-minute 
timestep, and yellow dotted line represent the median values of the stochastic simulation. 

Table 2. Comparison of the SUDS design values (V50, V80, V90, V95 and V99) in mm. by using the10-
minute observed data, daily observed data and stochastic generated data, and by considering different 
storm thresholds (0, 1 and 2 mm). 

  Observed 10 min Observed Daily 
Simulated Error Daily Error Simulated 

Min Max Median % % 
Threshold 0 mm 

V50 7.35 8.57 7.23 8.25 7.8 17% 6% 
V80 19.53 22.89 16.4 20.3 18 17% −8% 
V90 29.39 33.64 23.4 30.8 26.15 14% −11% 
V95 40.17 44.81 30 42.9 34.5 12% −14% 
V99 65.38 69.94 44.7 112.5 57.25 7% −12% 

Threshold 1 mm 
V50 7.49 8.72 7.29 8.32 7.85 16% 5% 
V80 19.78 22.96 16.5 20.4 18 16% −9% 
V90 29.6 33.93 23.5 30.9 26.2 15% −11% 
V95 40.15 44.8 30.4 42.9 34.6 12% −14% 
V99 67.55 69.93 44.7 112.5 57.25 4% −15% 

Threshold 2 mm 
V50 7.75 8.95 7.41 8.41 7.96 15% 3% 
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V80 20 23.3 16.6 20.5 18.2 17% −9% 
V90 29.9 34.21 23.6 31.2 26.25 14% −12% 
V95 40.82 45 30.4 42.9 34.65 10% −15% 
V99 67.55 69.94 44.7 112.5 57.25 4% −15% 

3.2.2. Design Parameters Based on Number of Events 

Figure 4 and Table 3 show, for the different storm thresholds considered, the values and 
uncertainty of the N50, N80, N90, N95, and N99 derived from the 100 analyzed series. In addition, 
values obtained from the observed 10-minute and daily time series are also presented. Results show 
a good performance of the simulated N80, N90, N95, and N99 by considering a storm threshold of 2 
mm. For design parameters based on the number of identified events, both the storm threshold 
considered and the criteria adopted to identify independent storms affect results significantly. For 
N80, N90, N95, and N99, better results were obtained for the stochastic approach than for daily data 
(storm threshold = 2 mm). 

 
Figure 4. Comparison of the SUDS parameters based on the number of rainfall events. Red line 
represents the event rainfall volume value that ensure a treatment of the 50, 80, 90, 95 and 99% of the 
total storm events within the analyzed period (58 years) at 10-minute time step. Green line 
corresponds to daily time step, blue lines correspond to the stochastic simulations at 10-minute 
timestep and yellow dotted line represent the median values of the stochastic simulation. 

Table 3. Comparison of the SUDS design values (N50, N80, N90, N95 and N99) in mm. by using the10-
minute observed data, daily observed data and stochastic generated data, and by considering different 
storm thresholds (0, 1 and 2 mm). 

 Observed 10 min 
Observed 

Daily 
Simulated 

Error Daily % Error Simulated % 
Min Max Median 

Threshold 0 mm 
N50 4.2 4.75 7.2 8.8 8 13% 90% 
N80 13.03 15.42 16.4 19 17.9 18% 37% 
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N90 22.15 26.1 23.13 27.32 25.35 18% 14% 
N95 31.29 37 29.9 36.48 33.11 18% 6% 
N99 55.02 62.83 46.19 63.19 52.4 14% −5% 

Threshold 1 mm 
N50 6.54 6.85 8.5 10.3 9.2 5% 41% 
N80 16.09 18.15 17.5 20.02 19.07 13% 19% 
N90 25.07 29.63 24.13 28.88 26.4 18% 5% 
N95 34.12 40.9 30.55 38.07 34.3 20% 1% 
N99 59.015 67.67 47.91 66.029 53.6 15% −9% 

Threshold 2 mm 
N50 8 8.42 9.5 11.2 10.2 5% 28% 
N80 18.18 20.84 18.5 21 20 15% 10% 
N90 27.82 31.77 25.3 30.3 27.45 14% −1% 
N95 36.8 43.05 31.5 39.2 35.45 17% −4% 
N99 62.84 68.6 48.3 69.95 57.76 9% −8% 

4. Conclusions 

The use of a stochastic approach for the generation of 10-minute time step rainfall series from 
daily observed data showed a good agreement compared to the 10-minute time step rainfall series. 
The proposed approach allows the estimation of very useful rainfall characteristics for SUDS design 
as the temporal distribution of storms, time among events, maximum, and mean storm rainfall 
intensities, among others. For the case study analyzed, the stochastic approach generated 10-minute 
rainfall series with IDF curves, and rainfall frequency curves similar to observed data. Parameters to 
design SUDS based on the number of storms identified have more dependence on the criteria, 
adopted to define independent storms or the minimum value of rainfall to consider a storm. 
However, the parameters to design SUDS based on the volume of the storm events are not sensible 
to the mentioned criteria. This approach allows us to quantify the associated uncertainty of the values 
adopted to the design of SUDS. It should be noted that we applied this methodology to one location. 
This might limit the generalization of the results obtained. Further research will be focused on the 
application of this approach on locations with different climate characteristics. 
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