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Abstract: Annual maximum daily rainfalls will change in the future because of climate change, 
according to climate projections provided by EURO-CORDEX. This study aims at understanding 
how the expected changes in precipitation extremes will affect the flood behavior in the future. 
Hydrological modeling is required to characterize the rainfall-runoff process adequately in a 
changing climate to estimate flood changes. Precipitation and temperature projections given by 
climate models in the control period usually do not fit the observations in the same period exactly 
from a statistical point of view. To correct such errors, bias correction methods are used. This paper 
aims at finding the most adequate bias correction method for both temperature and precipitation 
projections, minimizing the errors between observed and simulated precipitation and flood 
frequency curves. Four catchments located in central western Spain have been selected as case 
studies. The HBV hydrological model has been calibrated, using the observed precipitation, 
temperature, and streamflow data available at a daily scale. Expected changes in precipitation 
extremes are usually smoothed by the reduction of soil moisture content due to expected increases 
in temperatures and decreases in mean annual precipitation. Consequently, rainfall is the most 
significant input to the model and polynomial quantile mapping is the best bias correction method.  
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1. Introduction 

Climate change is a reality and affects the most dangerous natural hazard in Europe, floods. 
Because of that, several studies and models have been developed to try to prevent their damages. In 
Spain, there are two sources of climate projections under climate change supplied by AEMET 
(‘Agencia Estatatal de Metorología’, in Spanish) and CORDEX. Garijo et al. [1] found that AEMET 
projections do not adequately characterize extreme events. Consequently, in this study, climate 
projections supplied by EURO-CORDEX are used. These climate projections denote that annual 
maximum daily rainfall quantiles will increase in some parts of Spain. Temperature and precipitation 
time series are the input data of the HBV model, calibrated with the methodology previously 
proposed [2].  

The GCM has a limited capacity to capture climatic variations at the catchment scale. Therefore, 
the mismatch between general and regional climate models needs to be corrected [3]. In addition, 
inputs to obtain simulated floods used to design spillways need to be the most similar to 



Proceedings 2019, 7, 14 2 of 7 

 

observations, in order to obtain accurate predictions in the future. Consequently, bias correction 
methods will be applied to both temperature and precipitation time series.  

2. Methods  

The methodology consists of the following steps: (i) calibration of the HBV model to adequately 
characterize the rainfall-runoff processes in a changing climate; (ii) selection of the best bias correction 
method for precipitation and temperature time series; and (iii) assessment of the expected changes in 
flood quantiles in the future caused by climate change. A GEV distribution has been used to obtain 
flood quantiles for a set of return periods.  

2.1. Study Area and Data  

Four catchments have been selected as case studies. They are located in the Douro river basin, 
in the northwest part of Spain (Figure 1). A dam is located at the outlet of each catchment. 
Consequently, observed data of inflow discharges are not recorded directly, but they can be estimated 
from observations of mean daily reservoir water levels and dam releases, collected by the Centre for 
Hydrographic studies of CEDEX.  

 
(a) (b) 

Figure 1. (a) Location of the case studies in Spain; (b) Catchments of the four case studies. 

Time series of daily observations of rainfall and temperature were supplied by the AEMET. Gaps 
in time series were filled by using observations at nearby gauging stations.  

Climate change projections provided by 12 regional climate models of the EURO-CORDEX 
program have been used (Table 1). Such projections are composed of daily rainfall and temperature 
time series with a spatial distribution through a grid with cells of 0.11º. The same control period 
(1971–2004, hydrological years) and future period under climate change (2011–2094, hydrological 
years) have been considered for all the climate models. The two representative concentration 
pathways (RCP) considered by the models, RCP 4.5 and 8.5, have been used.  

Table 1. Regional Climate Models used. 

Acronym  CGM  RCM  
ICH-CCL  ICHEC-EC-EARTH  CCLM4-8-17  
MPI-CCL  MPI-ESM-LR  CCLM4-8-17  

MOH-RAC  MOHC-HadGEM2-ES  RACMO22E  
CNR-CCL  CNRM-CMS  CCLM4-8-17  
ICH-RAC  ICHEC-EC-EARTH  RACMO22E  

MOH-CCL  MOHC-HadGEM2-ES  CCLM4-8-17  
IPS-WRF  IPSL-CMSA-MR  WRF331F  
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IPS-RCA  IPSL-CM5A-MR  RCA4  
MOH-RCA  MOHC-HadGEM2-ES  RCA4  
ICH-RCA  ICHEC-EC-EARTH  RCA4  
CNR-RCA  CNRM-CM5  RCA4  
MPI-RCA  MPI-ESM-LR  RCA4  

2.2. HBV Model and Calibration   

The hydrological response in the four catchments has been simulated with the HBV rainfall 
runoff model [4]. Specifically, the HVB-light-GUI 4.0.0.7 version has been used. The model 
parameters have been calibrated using Monte Carlo simulations and GAP optimization. Both tools 
are integrated in the HBV software.   

Model parameters have been calibrated using the goodness of fit function ‘Reff’ integrated in 
the HBV software, which compares the prediction supplied by the model with the simplest possible 
prediction, a constant value equal to the mean value of observations over the entire period (Equation (1)).  𝑅 = 1 − ∑(𝑄 (𝑡) − 𝑄 (𝑡))∑(𝑄 (𝑡) − 𝑄 )  (1) 

where Qsim(t) is the simulated discharge at time step t, Qobs(t) is the observed discharge at time step t, 

and obsQ  is the mean value of discharge observations. 
A sensitivity analysis with 1,000,000 Monte Carlo simulations has identified the most important 

parameters in the four catchments: FC, PERC, K0, and K1. FC is the maximum soil moisture storage. 
PERC, K0, and K1 are associated with soil infiltration represented by the model with three boxes. As 
expected, the snow routine is not important in the case studies.  

Flood quantiles have been calculated by fitting a Generalized Extreme Value (GEV) distribution 
to the annual maximum flows simulated by the model. Flood quantiles obtained by the simulation 
have been compared with flood quantiles obtained from observed data, for a set of return periods. 
An iteration process has been used, prioritizing the similarity in the simulation of extreme values, 
because the results of the study will be applied to dam design.  

2.3. Bias Correction   

Precipitation and temperature projections supplied by climate models in the control period 
usually do not fit the observations in the same period exactly from a statistical point of view. Such 
errors could affect simulated flows in future periods. First, temperature and precipitation have been 
corrected separately. Second, temperature and precipitation correction techniques have been 
combined to identify the best bias correction methodology. Quantile mapping techniques have been 
used: QM linear transformation and QM power transformation [5,6] for precipitation series and 
simple seasonal bias correction for temperature series [6].  

3. Results and Discussion  

The best bias correction method has been identified for: (i) temperature projections, in terms of 
monthly averages; (ii) extreme precipitation in climate projections, in terms of frequency curves for 
annual maximum series; and (iii) extreme simulated discharges.  

3.1. Temperature Correction  

In the four catchments, monthly mean temperatures supplied by climate models are significantly 
lower than the observations. The difference between monthly temperatures supplied by each climate 
model and observations has been added to the temperature time series in each month to correct the 
bias [6] (Figure 2).   
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Figure 2. Comparison of monthly mean temperatures supplied by climate models and observations 
in the control period. Blue lines are observations. Red lines represent the median of the 12 climate 
models considered.  

3.2. Precipitation Correction  

Climate models supply differing precipitation magnitudes in the control period compared to 
observations. In the Barrios de Luna catchment, climate models supply larger extreme precipitations 
than observations. However, in the other three catchments, climate models supply lower 
precipitations. 

A set of methods has been considered to correct the errors [6]. In this paper, the Quantile 
mapping technique has been used, consisting of fitting a function to the comparison of data supplied 
by the models and observations. Linear and polynomial functions have been considered. The fitted 
function is used to correct both the control and future data.  

The results obtained after correcting bias by the lineal and polynomial techniques show smaller 
errors than in the case of raw precipitation data. For precipitation frequency curves, the linear 
correction is the best bias correction method (Figure 3.) 

 
Figure 3. Frequency curves of annual maximum daily precipitation in two catchments (Camporredondo 
and Porma). Blue lines are observations. Red lines represent the median of the 12 climate models 
considered. The first column shows raw precipitation supplied by climate models. The second column 
shows linear bias correction. The third shows polynomial bias correction. Each row shows a case 
study. 
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3.3. Flood Frequency Curves in the Control Period   

Simulations of the HBV model have been conducted with a set of combinations of raw and bias 
corrected temperature and precipitation time series as input data, in order to compare the bias 
correction techniques. The best bias correction technique is identified in terms of the smallest errors 
with the flood frequency curve estimated with observations (Figure 4.). The higher return periods 
have been considered due to their importance in dam design. In general, the smallest errors are 
obtained with the polynomial bias correction technique. In particular, the methodologies with the 
smallest absolute error for higher return periods are raw temperature and precipitation supplied by 
climate models in Barrios de Luna, lineal correction for precipitation and mean monthly temperature 
correction in Camporredondo, polynomial correction for precipitation and mean monthly 
temperature correction in Porma, and polynomial correction for precipitation and raw temperature 
in Riaño.  

 

Figure 4. Comparison of flood frequency curves with observations and HBV simulations using a set 
of combinations of bias correction techniques in two catchments (Camporredondo and Porma). Blue 
lines are observations. Red lines represent the median of the 12 climate models considered. 

3.4. Flood Frequency Curves in the Future Period  

Finally, precipitation and temperature projections in the future (2011–2095) have been obtained 
in each catchment with the best bias correction techniques identified in the previous step (Figure 5.). 
Simulations with the HBV model show that, in general, flood frequency curves decrease in the future, 
though an increase can be seen in some cases.  
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Figure 5. Flood frequency curves in the future period (2011–2095) with the best bias correction 
techniques referred to in the previous section. 

4. Conclusions   

Temperature time series supplied by climate models in the control period are significantly lower 
than observed data. In addition, bias correction of precipitation time series is more important than 
temperature correction, affecting flow results.   

It has been found that the best bias correction method for precipitation projections, in terms of 
precipitation frequency curves, differs from the best method in terms of flood frequency curves. 
Simulations with the HBV model in the future period under climate change assumptions show a 
general reduction in flood quantiles, smoothing the increases identified in precipitation quantiles. In 
the control period, when precipitation quantiles are larger than observations, flood quantiles are 
similar to observations. In general, the period 2071–2095 presents the smallest reductions and, in 
some cases, larger increases.  

In terms of high return periods in flood frequency curves, the best bias correction techniques are 
the polynomial correction for precipitation and the monthly mean correction for temperature, in the 
four case studies.  
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Abbreviations  

AEMET Agencia Española de Meteorología  
CORDEX Coordinated Regional Climate Downscaling Experiment  
GCM General Climate Model  
GEV Generalized extreme value  
HBV Hydrologiska Byråns Vattenbalansavdelning  
QM Quantile Mapping  
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