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Abstract: The fused deposition modeling (FDM) process, commonly known as three-dimensional 
(3D) printing, deals with the manufacturing of parts by the subsequent addition of layers of fused 
plastic filament. The parts obtained during this process can be used for domestic applications, rapid 
prototyping, or final applications. During the preparation of the printing model (slicing), different 
process parameters must be defined, such as extruder speed, extruder height in relation to the bed, 
and bed temperature. Parameters that, if incorrectly defined, can lead to a series of deficiencies in 
the parts, such as low dimensional accuracy, low surface quality, reduced mechanical resistance, 
and, eventually, the occurrence of several printing defects in the parts, impairing or even preventing 
its use. The 3D printing process has a critical period at its beginning during the manufacturing of 
the piece’s first layer. The present work aims to study some of the geometric anomalies observed in 
monolayer pieces when some of the printing parameters are improperly defined. Printing tests on 
monolayer parts were carried out with a polylactic acid (PLA) filament. Herein, a home grade 3D 
printer, model Graber i3, was used. The height of the extruder to the bed was altered in relation to 
the recommended value, and three pieces were printed for each height used. The printed parts were 
scanned with a 1200 × 1200 dpi resolution, using a DCP-L2540DW model scanner. The images 
obtained were then analyzed using the Matlab® software and the geometric characteristics of the 
pieces were compared. The study is a first step towards a better understanding of the geometric 
defects obtained when an incorrect definition of basic parameters occurs when processing the three-
dimensional model. 

Keywords: fused deposition modeling; 3D printing; geometric deformations; 3D printing parameters; 
process parametrization 
 

1. Introduction 
The term additive manufacturing (AM) is associated with a category of processes 

where the desired part is produced through the successive addition of material in layers, 
in a predetermined path created by information obtained directly from a three-
dimensional (3D) geometric computational representation of the component. This 
representation is in the form of a 3D geometric model originated from a CAD (computer-
aided design) system [1]. 
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This category of processes has shown advances in recent years, both in terms of 
technological development and in popularity for industry applications. Moreover, in 
certain cases, for production purposes in small businesses and in academic research [2–4]. 

The use of this technology has advantages over traditional machining and forming 
processes, such as a better use of the material. Since the part is produced by adding up 
materials only in the necessary dimensions, there are no losses in the form of chips, an 
inevitable residue in the cutting processes, and any leftover material can be reused after 
minimal treatment. There is no need to use cutting tools, fasteners, and coolants. There is 
also the possibility of obtaining complex geometries that are difficult to produce by 
subtractive processes, such as machining, and which would result in the need for 
additional processing or unwanted changes to the design of the part [2]. 

Just as there are advantages, this technology also has disadvantages compared to 
traditional production methods, especially in the matter of large-scale production. Among 
them: part size limitations due to suboptimal material resistance; long manufacturing 
time; low stiffness; imperfections in non-horizontal surfaces due to the approximation that 
is made of a curve (the surface’s “silhouette”) from a large number of “sides” (stacking of 
the layers); low predictability; and general product quality [2,5–7]. 

Among AM methods, one of the most popular and widespread is the fused 
deposition modeling (FDM). A process in which the material, usually a polymeric one, is 
deposited in the form of a thin filament through a heated extrusion process. The 
movement in the XY plane, usually achieved by combining movement from the bed and 
from the extruder, is responsible for defining the shape of the layer. When one layer is 
completed, the process moves on to the next one by raising the nozzle or lowering the bed, 
depending on printer models variations. With the material deposited, its solidification 
occurs as a result of its cooling or a chemical reaction [1]. 

Apart from the general limitations mentioned above, the FDM process can suffer 
from a variety of problems that result in defects and/or failures in the produced part. In a 
proportion dependent on the manufacturer and the equipment model [8]. In addition, it 
is also necessary to carefully consider the values chosen for the parameters used and the 
operation of the slicer software involved. The slicer is responsible for converting the part 
tridimensional model generated into G Code, a language used to describe the necessary 
sequence of movements performed by the 3D printer, to produce the part. It is in the slicer 
that the infill pattern of the piece is chosen. The choice of these operational and pre-
processing parameters in the slicer are important because, in certain situations, even small 
parametric variations, coupled with favorable environmental conditions, can facilitate the 
appearance of defects, such as bubbles and distortions, to contribute to the reduction of 
mechanical properties and to the generation of stress concentrators as shown by [5,7,9]. 

Due to the reasons shown previously, this study seeks to deepen the knowledge in 
the 3D printing field, analyzing the effect of parametric variations on the final quality of 
the manufactured parts, aiming to contribute to a better understanding of the occurrence 
and effects of these phenomena on the FDM process. 

2. Materials and Methods 
2.1. Experimental Setup and Study Procedures 

This work aims to study how the use of parameters with values different from the 
ones recommended affect the geometry and surface quality of the printed layer. The 
condition chosen for the experiment was the distance between the extruder nozzle and 
the bed. 

The test consists of manually changing, using the Slic3r® software running inside the 
Repetier-Host® software, the height of the extruder nozzle in relation to the bed before 
starting to make the piece. This can be translated as variations in the Z-axis. This approach 
was chosen since it allows one to simulate the localized unevenness of the bed and errors 
in the definition of the system’s origin, as well as situations where there are defects such 
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as part detachment or scratching. As discussed by [6] and shown in some of their 
experiments, too large of a gap between bed and nozzle can cause the layer to detach, just 
as a too small of a gap can result in the appearance of scratches on the surface. 

The test bench consists of three groups of parts, one for each printing condition, and 
with each group consisting of three specimens. Each piece was printed individually, i.e., 
each printing process produced a single piece, and then the bed and the nozzle were 
cooled to room temperature. Once this temperature was reached, the previous printed 
piece was removed, and both bed and nozzle were heated again to the respective 
recommended operating temperatures (65 °C and 190 °C, respectively). This procedure 
was done to ensure that all parts were produced under the same conditions. 

For this experiment, a Graber i3 model 3D printer, manufactured by GTMax3D® was 
used alongside a 1.75 mm diameter PLA filament. The experimental pieces were small 
squares with 2 mm sides and 0.2 mm thickness, with rectilinear filling in the internal and 
external regions, software standard, and a single layer. The single layer was chosen due 
to the importance of the first layer for the whole process, since it served as the basis for 
subsequent layers and its deformations could pass on in a domino effect, and because they 
were the biggest basic element of the piece [9]. The layer had a thickness of 0.2 mm and 
thus the height was considered as a reference for the variations in the Z-axis between table 
and extruder nozzle. In addition to this height, tests were made with a negative variation 
of 0.2 mm and a positive variation of 0.1 mm, as can be seen in Figure 1. 

 
Figure 1. Tested conditions: (a) Nozzle manually approached to the bed (−0.2 mm); (b) baseline condition; (c) nozzle 
manually distanced from the bed (+0.1 mm). 

2.2. Digital Analysis Procedures 
The components were digitalized through a DCP-L2540DW model scanner in the 

business card (90 × 60 mm) preset with resolution of 1200 × 1200 dpi. This procedure 
resulted in files in the portable network graphics (PNG) format with dimensions of 3968 
× 2551 pixels. 

Afterwards, specific measures were carried out through the Matlab® software, with 
the purpose of extracting maximum geometrical information from the components. In this 
context, the pieces were positioned on a graph paper before being digitalized, to enable 
an accurate pixel to millimeter dimensional conversion. 

To execute the measures, the app ImageViewer®, which is a part of the image 
processing and computational view toolbox on the Matlab® version R2017b software, was 
used. Therefore, each image was accessed separately, and the feature denominated 
Measure Distance was utilized. This tool measures, in two dimensions (X and Y), the 
quantity of pixels between two selected dots. 

Among the information, dimensions of the piece such as total width and height, layer 
thickness, and diagonal length were extracted. The diagonal measures were obtained to 
study flaws in the extruder positioning, while thickness of both internal and external 
layers would indicate height variations in relation to the table. Once the process of 
information extraction was concluded, the images of the pieces with the provided 
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measures were saved in the tagged image file format (TIFF), with the intention of 
obtaining graphic representations with high resolution. 

All that extracted information was organized in cells inside the Matlab® software, 
which enabled a comparison between the data of each repetition, according to condition. 
Finally, new comparisons were made between the printed conditions, starting from the 
representative measures defined in the previous step. 

3. Results and Discussion 
The pieces obtained under different printing conditions can be observed on Figure 2. 

It is possible to observe, in Figure 2, the existence of red lines, i.e., lines which were drawn 
throughout the digital analysis procedure of the piece geometrical characteristics, 
alongside with white rectangles, that provide the refereed dimension in number of pixels. 

 
Figure 2. Obtained pieces: (a) Piece produced with a variation of −0.2 mm in the Z-axis; (b) piece produced with no 
variation in the Z-axis; (c) piece produced with a variation of +0.1 mm in the Z-axis. 

The baseline condition piece can be observed in Figure 2b. Regarding the external 
printing pattern, it is possible to observe the presence of 3 visible printed segments, with 
well-defined and almost constant height and width values along each printed segment. 
The piece area regarding the internal printing pattern also presents well defined printed 
segments, with practically homogeneous height and width values along all the printed 
segments. 

The piece obtained under the condition 1 printing can be observed on Figure 2a. 
Regarding the external printing pattern, the piece printed under this condition presents 
visible deformations in the extruder printing segments, which can be spotted by the 
presence of only 2 visible printed segments, and with visible width variation between the 
printed segments. Deformations can also be observed on the corners of the external 
printing pattern, and in the form of lumps along the printing segments. The piece area 
regarding the internal printing pattern also presents visible deformations, in the form of 
lumps and geometrical variations for both height and width in each printed segment. 

The geometrical deformations observed on the piece obtained under the condition 3 
printing, as seen in Figure 2c, are remarkably distinct from the deformations observed on 
the piece obtained under the condition 1 printing. Regarding to the external printing 
pattern, the obtained piece presents major deformations between the printing segments, 
in some points with only 2 visible printed segments, and in others with only 1 printed 
segment. It is also possible to observe the existence of an area without proper fill in the 
beginning of the external printing pattern first printing segment. The region in which the 
external printing pattern connects to the internal printing pattern, presents major 
deformations, in the form of detachments between the printing segments. The piece area 
regarding the internal printing pattern also presents visible deformations, in the form of 
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large voids between the extruder printing segments, and major variations in both height 
and width values along each printed segment. 

The visual inspections analysis results shown the existence of major surface and 
geometrical differences between the pieces obtained under different Z-axis values. The 
geometrical values obtained in Matlab® for the printing repetitions were compared. The 
observed standard deviation shows that there is repeatability in the obtained geometrical 
results. The mean values were then obtained, regarding to each geometrical variable, 
along all the repetitions for each printing condition. 

The mean values for both height and width of each piece obtained under the different 
printing conditions were compared to the mean values for both height and width obtained 
for the piece obtained under baseline printing condition. The comparative results are 
shown in the form of percentage of relation to the printing condition 2 values in Figure 3. 

 
Figure 3. Percentage of relation to the measured obtained for the condition 2 printing: (a) Total piece height; (b) total piece 
width. 

The total piece height comparison, represented in Figure 3a, reveals that the 
geometrical deformations observed on the pieces printed under conditions 1 and 3 results 
in different relation values than the pieces printed under condition 2. The total piece 
height observed for the condition 1 possess a relation of 100.8% to condition 2, which 
represents an increase of 0.8%. Meanwhile, the total piece height observed for the 
condition 3 possess a relation of 98.4% to condition 2, which represents a decrease of 1.6%. 

A similar behavior is observed regarding to the total piece width, represented on 
Figure 3b. The total piece width observed for the condition 1 possess a relation of 101.4% 
to condition 2, which represents an increase of 1.4%. Meanwhile, the total piece width 
observed for the condition 3 possess a relation of 95.2% to condition 2, which represents a 
decrease of 4.8%. 

4. Conclusions 
The differences observed between the printing conditions 1 and 3, when compared 

to the baseline condition, may be attributed to the more common and pronounced piece 
detachment from the printing table, a defect which is aggravated by the larger variation 
in the Z-axis, alongside with the appearance of gas bubbles, which also contributes to the 
overall degradation of the layer geometry [6,9]. 

Through an analysis of the infill printing patterns, it is possible to infer that the main 
alteration resulted from an incorrect extruder positioning is on the segments tracks. The 
struggle observed in distinguishing the segments on the external printing pattern of the 
piece printed under condition 1 is due to the occurrence of overlap between the segments, 
which presents a larger lateral runoff due to the unwanted contact with the hot extruder 
when it is performing an parallel segment printing. 
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The obtained values allow us to notice that a change, intentional or not, and relatively 
small in absolute terms, in the distance between the extruder nozzle and the bed can result 
in major surface quality losses and, although least visible, a less tight dimensional 
tolerance. It is worth to point out that, in the circumstance of a complete piece production, 
defects in each individual layer may occurs. These defects accumulate alongside all the 
piece production, resulting in a final piece with major geometrical and superficial 
deformations, which can result on the discarding of the produced piece. 

Fundamentally, a negative variation in the Z-axis results in a flattening of the 
segments, which leads to planar deformations and an unwanted relative increase in the 
preestablished piece dimensions. On the other side, a positive variation in the Z-axis 
results in segments detachment, which leads to an unwanted relative decrease in the 
preestablished piece dimensions. 

A more profound study is necessary in order to assure that, in an overall manner, the 
defects generated by a positive variation in the Z-axis are larger than those generated by 
a negative variation in the Z-axis, or if the found results are due to some specificity of the 
current paper. 

Author Contributions: Methodology, M.G.F.d.C.; T.G.L.; software, V.S.B.; formal analysis, 
M.G.F.d.C.; T.G.L.; investigation, T.G.L.; resources, P.R.A.; T.V.F.; writing, M.G.F.d.C.; T.G.L.; 
V.S.B.; review and editing, P.R.A.; T.V.F.; supervision, P.R.A.; T.V.F. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This work was supported by the São Paulo Research Foundation (FAPESP) (grants 
#2016/22038-8 and 2019/22788-5) and by the National Council for Scientific and Technological 
Development (CNPq) (grants #306435/2017-9). 

Conflicts of Interest: The authors declare no conflict of interest 

References 
1. Volpato, N. Manufatura Aditiva: Tecnologias e Aplicações da Impressão 3D, 1st ed.; Blucher: São Paulo, Brazil, 2017; ISBN 

9788521211518. 
2. Huang, S.H.; Liu, P.; Mokasdar, A.; Hou, L. Additive manufacturing and its societal impact: A literature review. Int. J. Adv. 

Manuf. Technol. 2013, doi:10.1007/s00170-012-4558-5. 
3. Schniederjans, D.G. Adoption of 3D-printing technologies in manufacturing: A survey analysis. Int. J. Prod. Econ. 2017, 183, 287–

298, doi:10.1016/j.ijpe.2016.11.008. 
4. Lopes, T.G.; Puzipe, I.B.G.; Antonio, Z.R.F.; Gimenes, L.E.P.; Junior, G.P.M.; de Candido, A.S.O. A Utilização de Manufatura 

Aditiva em Projetos de Pesquisa. In Proceedings of the Anais do II Congresso de Inovação e Tecnologia—FATEC, Lajeado, 
Brazil, 21–22 June 2018; Pazin, A., Meira, F.L., Eds.; Centro Paula Souza: Lins, SP, Brazil, 2018; pp. 104–112. 

5. Wu, Y.; He, K.; Hu, H.; Zhao, X. Process Monitoring of Fused Deposition Modeling through Profile Control. In Proceedings of 
the 2018 IEEE International Conference on Cyborg and Bionic Systems, CBS 2018, Shenzhen, China, 25–27 October 2018. 

6. Wu, H.; Yu, Z.; Wang, Y. Experimental study of the process failure diagnosis in additive manufacturing based on acoustic 
emission. Measurement 2019, 136, 445–453, doi:10.1016/j.measurement.2018.12.067. 

7. Tlegenov, Y.; Hong, G.S.; Lu, W.F. Nozzle condition monitoring in 3D printing. Robot. Comput. Integr. Manuf. 2018, 54, 45–55, 
doi:10.1016/j.rcim.2018.05.010. 

8. Baumann, F.; Roller, D. Vision based error detection for 3D printing processes. MATEC Web Conf. 2016, 59, 06003, 
doi:10.1051/matecconf/20165906003. 

9. Wendt, C.; Fernández-Vidal, S.R.; Gómez-Parra, Á.; Batista, M.; Marcos, M. Processing and Quality Evaluation of Additive 
Manufacturing Monolayer Specimens. Adv. Mater. Sci. Eng. 2016, 2016, 1–8, doi:10.1155/2016/5780693. 

 

 


