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Abstract: Proteins represent one of the most important building blocks for most biological processes. 
Their biological mechanisms have been found to correlate significantly with their dynamics, which 
is commonly investigated through molecular dynamics (MD) simulations. However, important 
insights on protein dynamics and biological mechanisms have also been obtained via much simpler 
and computationally efficient calculations based on elastic lattice models (ELMs). The application 
of structural mechanics approaches, such as modal analysis, to the protein ELMs has allowed to find 
impressive results in terms of protein dynamics and vibrations. The low-frequency vibrations 
extracted from the protein ELM are usually found to occur within the terahertz (THz) frequency 
range and correlate fairly accurately with the observed functional motions. In this contribution, the 
global vibrations of lysozyme will be investigated by means of a finite element (FE) truss model, 
and we will show that there exists complete consistency between the proposed FE approach and 
one of the more well-known ELMs for protein dynamics, the anisotropic network model (ANM). 
The proposed truss model can consequently be seen as a simple method, easily accessible to the 
structural mechanics community members, to analyze protein vibrations and their connections with 
the biological activity. 
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1. Introduction 

The fundamental paradigm that has characterized most of the research in the field of protein 
computational biology relies on the sequence–structure–dynamics–function relationship [1]. The 
linear sequence of amino acids arranges itself into the tertiary structure of the protein through the 
complex chemo-physical phenomenon of protein folding [2,3]. The folded protein structure is not a 
static entity, but it is generally highly dynamic and flexible. The resulting dynamics of the protein 
obviously depends on the three-dimensional protein structure. Finally, it has been demonstrated that 
the dynamics and flexibility of the protein acts towards its functionality and biological mechanism 
[1,4,5]. Therefore, the sequence of amino acids generates the protein structure, which in turn drives 
the biological function through its dynamic and flexibility features. 

Several computational approaches have been suggested to reproduce the protein dynamics and 
vibrations correctly. Molecular dynamics (MD) and normal mode analysis (NMA) represent two of 
the most widely used methodologies [6,7]. The former looks at the complete trajectories of the atoms, 
whereas the latter investigates the small-amplitude normal modes of the system, which is 
characterized by multi-parameter harmonic potentials. Later on, it has been shown that simplified 
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models relying only on a single-parameter harmonic potential, i.e., an ensemble of Hookean springs, 
are sufficient to describe the slow dynamics of the protein with good details [8]. Then, it has also been 
found that even coarse-grained models, only based on the Cα atoms of the protein, are able to properly 
reproduce the protein slow dynamics as well as the fluctuations observed in the X-ray 
crystallographic experiments, i.e., the B-factors [9,10]. 

Here, we report the results that arise from the application of modal analysis to the elastic lattice 
model (ELM) of hen egg-white lysozyme, a well-known globular protein. The structural model has 
been developed within a finite element (FE) framework, and the outcomes have provided useful 
insights regarding the lysozyme flexibility, the biologically relevant motions as well as the vibrational 
frequencies. In particular, the latter have been found to lie in the (sub-)THz frequency range. More 
detailed information about this analysis, and the obtained results can be found in [11]. 

2. Materials and Methods 

The structural model was developed within the FE code LUSAS [12] and relies on modelling the 
protein structure as an ELM, i.e., a 3D spatial truss. The elastic bars of the truss were generated by 
taking into account only the Cα atoms of the lysozyme (PDB: 4YM8) and by connecting those nodes 
that lie closer than a selected cutoff value. Five different cutoffs were selected, i.e., 8, 10, 12, 15, and 
20 Å, in order to generate various ELMs and investigate the influence of such a geometrical parameter 
on the outcomes. The elastic bars were assigned the same axial rigidity EA, where E is the Young’s 
Modulus and A the cross-sectional area. The value of rigidity was defined based on the comparison 
between the experimental B-factors and the computed ones (see below). The masses of all the ELM 
nodes were set equal among them, and equal to the total mass of the protein divided by the number 
of nodes [11]. 

Based on the generated ELMs, modal analysis was carried out, by solving the multi-degree-of-
freedom (MDOF) free-vibration problem within the FE environment. This implies solving the 
following eigenvalue–eigenvector equation: ሺ𝑲 − 𝜔௡ଶ𝑴ሻ𝜹௡ = 𝟎, (1)

K and M being the global stiffness and mass matrix of the ELM, respectively, and ωn and δn the 
eigenvalue (angular frequency) and eigenvector (mode shape) related to the nth vibrational mode. 
Note that, for an ELM counting N nodes and which is not externally constrained, we obtain 3N-6 non-
zero eigenvalues and 3N-6 non-rigid eigenvectors [11]. The stiffness and mass matrix were computed 
within the FE environment as [13]: 𝑲 = ∑ 𝑪𝒃𝑻𝑵𝒃𝑻𝒌𝒃∗𝑵𝒃𝑪𝒃𝑩𝒃ୀ𝟏 ,                  𝑴 = 𝑚𝑰, (2)

where kb* represents the 2 × 2 stiffness matrix of the bth elastic bar in the local reference system, Nb is 
the 2 × 6 rotation matrix for the bth bar between the local and global reference systems, Cb is the 6 × 
3N expansion matrix, which is used to expand the stiffness matrix of the bth bar to the global structural 
dimension, m is the mass of each ELM node, and I is the 3N × 3N identity matrix [11]. 

One of the most used methods for the extraction of the normal modes from the coarse-grained 
protein crystal structure is the anisotropic network model (ANM) [10]. The FE-based ELM described 
above can be seen as the counterpart of the ANM by following a purely structural mechanics 
approach. The main difference is that the ELM defined above also includes the quantitative 
information about the mass of the system, which is commonly not included in ANM calculations [11]. 
Nevertheless, it can be easily demonstrated that the stiffness matrix of the ELM K corresponds to the 
Hessian matrix of the ANM H. The latter can be represented as a N × N matrix, whose elements are 3 
× 3 sub-matrices Hij. These contain the second partial derivatives of the harmonic potential of the 
linear spring connecting nodes i and j (see [10,11,14] for more details). In [11], we have shown that 
there exists complete consistency between the ELM K and the ANM H. In particular, when the decay 
parameter of the ANM spring constant is set equal to 1 [14], the two matrices are exactly the same. 

Based on the eigenvalues and eigenvectors obtained from Equation (1), the B-factors can be 
numerically computed as [11,15]: 
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𝐵௜ = ଷ଼ 𝜋ଶ𝑘஻𝑇 ∑ ఋ೔,೙మఠ೙మଷே௡ୀ଻ , (3)

being Bi the B-factor of the ith node, kB the Boltzmann’s constant, T the absolute temperature, δi,n the 
absolute displacement of the ith node according to the nth mode, and ωn the angular frequency of the 
nth mode shape. The B-factors obtained from Equation (3) can be directly compared with the 
experimental ones contained in the PDB file [16]. Moreover, by posing that the average value of the 
experimental B-factors should match the average value of the computed ones, one can fix the axial 
rigidity EA to be assigned to the elastic bars of the ELM. 

3. Results and Discussion 

Table 1 reports the structural features of the five generated ELMs, according to the selected cutoff 
value. It can be seen that, increasing the cutoff value, the number of elastic connections within the 
ELM increases, therefore the mean length of the elastic bars is greater. However, in order to have 
consistency between the average value of the numerical and experimental B-factors, the axial rigidity 
EA assigned to the elastic bars needs to decrease as the cutoff increases. As a result, the axial stiffness 
of the mean elastic connection gets lower for higher cutoffs. Table 1 also shows the obtained Pearson 
correlation coefficients between the experimental and numerical B-factors. As can be seen, the 
correlation is around 60–70%, and it tends to increase for higher cutoffs [11]. 

Table 1. The five generated elastic lattice models (ELMs) for the lysozyme: structural features and 
correlation between the experimental and numerical B-factors. 

Model Cutoff (Å) Mean Length of 
the Elastic Bars (Å) 

EA (pN) Stiffness of the 
Mean Connection (N/m) 

Correlation 
Bnum vs Bexp 

A 8 5.71 831 1.455 0.57 
B 10 7.21 235 0.326 0.67 
C 12 8.61 124 0.144 0.66 
D 15 10.59 71 0.067 0.69 
E 20 13.46 45 0.033 0.72 

From the analysis of the eigenvectors δn, i.e., the mode shapes, it was found that the low-
frequency vibrational modes obtained from the ELMs of lysozyme reproduce fairly accurately the 
biologically relevant motion of the lysozyme [11]. Additionally, the ELM-based mode shapes were 
found to imply high flexibility in the same regions of the protein as previously obtained by Levitt et 
al. [7], who made use of NMA in internal coordinates. The cutoff parameter was found to have a 
certain influence on the obtained mode shapes. As extensively reported in [11], the mode shapes 
obtained from models with close cutoff values, i.e., 10, 12, and 15 Å, exhibit several common features. 
Conversely, using much lower and much higher values of the geometrical cutoff, i.e., 8 and 20 Å, 
leads to some differences in the displacement field of the mode shapes. Nevertheless, all models were 
efficiently able to detect the regions expected to have the highest flexibility. 

From Equation (1), the angular frequencies ωn associated to each mode shape were also obtained, 
which are linearly related to the vibrational frequencies fn (ωn = 2πfn). Figure 1 shows the frequencies 
for the lysozyme ELM, depending on the selected cutoff value. Figure 1a displays the entire set of 
frequencies according to the mode number, whereas Figure 1b reports the distribution of the 
frequency values. As can be see, the vibrational frequencies lie in the (sub-)THz range. The lowest 
frequency ranges from 0.046 THz for Model A up to 0.117 THz for Model E [11]. It can be inferred 
that increasing the cutoff value leads to higher values of the frequency. This phenomenon occurs up 
to about the 50th mode. Afterwards, it can be seen that higher values of the frequency are obtained 
for the lower cutoff values. Finally, Figure 1b shows that the histograms of frequencies, which 
resemble Gaussian-like distributions. This seems to be a common feature to all globular proteins, as 
shown in [17,18]. It is also evident that, adopting higher cutoff values for the protein ELM, the whole 
range of obtained frequencies becomes remarkably narrower. 
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Figure 1. Frequencies in the (sub-)THz frequency range for the lysozyme: (a) frequency for all 
obtained normal modes; (b) frequency distributions. 

4. Conclusions 

In this contribution, we have discussed the results of modal analysis on the lysozyme ELM, 
which were previously reported in [11]. In particular, we observed that the cutoff parameter has a 
certain influence on the assigned rigidity/stiffness values of the ELM members and on the correlation 
between the numerical and experimental B-factors. In this case, the correlation was found to increase 
as the geometrical cutoff increases. The obtained mode shapes were found to reproduce fairly 
accurately the biologically relevant motion of the enzyme, with some slight differences in the 
displacement fields due to the specific selected cutoff value. Finally, the frequency values were found 
to distribute according to Gaussian-like distributions in the (sub-)THz frequency range. The range of 
the complete set of frequencies was also found to shrink as the cutoff value of the ELM increases. 
Future studies will investigate more deeply such frequency distribution, which seems to be a 
common feature to all globular proteins. 
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