E proceedings ﬁw\p\py
Va

Proceedings

Deep Anomaly Detection via Morphological
Transformations

Taehyeon Kim © and Yoonsik Choe *

Department of Electrical & Electronic Engineering, Yonsei University, Seoul 03722, Korea; pyomu@yonsei.ac.kr
* Correspondence: yschoe@yonsei.ac.kr; Tel.: +82-2-2123-2774
1 Presented at 1st International Electronic Conference on Applied Sciences, 10-30 November 2020;

Available online: https:/ /asec2020.sciforum.net/.

check for
Published: 11 November 2020 updates

Abstract: The goal of deep anomaly detection is to identify abnormal data by utilizing a deep
neural network trained by a normal training dataset. In general, industrial visual anomaly detection
problems distinguish normal and abnormal data through small morphological differences, such as
cracks and stains. Nevertheless, most existing algorithms focus on capturing not morphological
features, but semantic features of normal data. Therefore, they yield poor performance on real-world
visual inspection, even though they show their superiority in simulations with representative image
classification datasets. To solve this problem, we propose a novel deep anomaly detection method that
encourages understanding of salient morphological features of normal data. The main idea behind our
algorithm is to train a multi-class model to classify between dozens of morphological transformations
applied to all the given data. To this end, the proposed algorithm utilizes a self-supervised learning
strategy, which makes unsupervised learning straightforward. Additionally, we present a kernel
size loss to enhance the proposed neural networks” morphological feature representation power.
This objective function is defined as the loss between predicted kernel size and label kernel size via
morphologically transformed images with the label kernel. In all experiments on the industrial dataset,
the proposed method demonstrates superior performance. For instance, in the MVTec anomaly
detection task, our model achieved an area under the receiver operating characteristic (AUROC)
value of 72.92%, which is 8.74% higher than the semantic-feature-based deep anomaly detection.

Keywords: anomaly detection; self-supervised learning; morphological transformation

1. Introduction

Deep anomaly detection means verifying abnormal data via a deep neural network trained by
normal instances. It is a significant challenge that has been well studied within various application
domains, including video surveillance, disease diagnosis, and visual inspection. In this paper, we tackle
the problem of deep anomaly detection in images. The intuition behind most existing methodologies
in this problem is training the deep neural network to understand semantically important features of
normal data. Hence, most of these studies [1-3] reported their superior results on representative image
classification datasets (e.g., MNIST [4] and CIFAR-10 [5]) that are composed of clearly distinguishable
classes. However, from the point of view of industrial inspection, these existing methodologies are
not useful for solving real-world problems. In a real-world problem, the criterion that discriminates
abnormal data from normal data is usually defined as morphological differences, such as cracks, stains,
and bends, which cannot be described semantically. For ease of understanding, the visual descriptions
of both semantic and morphological differences are shown in Figure 1.
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Figure 1. The visual descriptions of semantic and morphological differences in images. (a) Semantic
difference: Both figures are sampled instances of the cats and dogs [6]. The difference between the
“cat” and “dog” classes is called a semantic difference. Generally, a semantic difference involves both
semantic and morphological differences. (b) Morphological difference: Both figures are sampled
instances from the MVTec dataset [7]. The difference between the “good wood” and “scratched wood”
classes is called a morphological difference. A morphological difference does not involve a semantic
difference. In other words, instances of both “good wood” and “scratched wood” have the same
semantic definition.

In order to utilize morphological features in deep anomaly detection, the proposed method is
based on a self-supervised learning algorithm. Self-supervised learning is a form of unsupervised
learning where the training data provide the supervision. There is a proxy loss in this learning
mechanism that makes the deep neural network achieve the main goal of target application. In other
words, by utilizing this training algorithm, the deep neural network can learn what we care about,
such as semantic differences or morphological differences. There have been several previous methods
in self-supervised-learning-based deep anomaly detection [2,8]. These existing methods focused on
training deep neural networks to understand the geometric transformations of normal data, including
rotation and translation. In particular, training a deep neural network to classify the rotation degree of
normal data is an effective strategy for capturing semantic information of normal data [8]. Obviously,
training geometric transformations in self-supervised learning does not help identify abnormal data in
the case represented in Figure 1b.

To mitigate this problem, we propose a novel deep anomaly detection algorithm based
on self-supervised learning using morphological transformations, including dilation, erosion,
and morphological gradient. The proposed method is based on the observation of an industrial
anomaly detection problem, which requires a morphological understanding of normal data. Therefore,
the proposed method is trained over a self-labeled dataset, which is constructed by the normal
instances and their morphologically transformed variants, accomplished by various morphological
transformations. At the test procedure, the trained neural network takes input on morphologically
transformed test data, and the distribution of softmax activations on trained normal data is useful
for detecting abnormal test data. The intuition behind the proposed method is that by training the
classifier to discriminate between transformed images, it has to learn valuable morphological features.

In this paper, we performed deep anomaly detection experiments based on the MVTec dataset [7],
which was created to measure anomaly detection performance in industrial inspection. There are
various industrial defection types (e.g., cracks, stains, bends) per class in this dataset. Additionally,
to demonstrate the superior performance of the proposed algorithm in the industrial aspect,
we compared it with the latest state-of-the-art deep anomaly detection based on self-supervised
learning [2].

In summary, the main contributions of this study are as follows:

®  The proposed method achieves superior performance in deep anomaly detection for industrial
inspection by training the deep neural network to capture salient morphological features of
normal data.
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e  The proposed algorithm can flexibly adapt to various real-world deep anomaly detection
problems by choosing the adequate morphological transformations in image processing
technology.

*  Because the proposed methodology utilizes self-supervised learning, it has lower computational
complexity than other deep anomaly detection methods, such as reconstruction-based algorithms.

2. Proposed Method

This section describes the morphological-transformation-based deep anomaly detection algorithm,
which is applied to industrial and real-world anomaly detection problems.

2.1. Morphological Image Processing

In digital image processing, a mathematical morphology transformation is a mechanism for
extracting image components that are useful in representing and describing region shapes, such
as boundaries, skeletons, and convex hulls [9]. The proposed deep anomaly detection learns the
morphological features through three representative morphological transformations, including erosion,
dilation, and morphological gradient, which are described in the following subsections.

2.1.1. Erosion and Dilation

The erosion at any location (x, y) of image i by a kernel b is the minimum value of 7 in the region
covered by b when the central point (origin) of b is at (x, y). For instance, if b is a 3 x 3 kernel, obtaining
the erosion at a pixel requires getting the minimum of the nine values of i included in the 3 x 3 region
determined by the kernel when its origin is at that point. In equation form, the erosion is defined as:

[iebl(x,y) = min i(x+s,y + ). 1)
(s,t)eb

Likewise, the dilation of i by b is designated as the maximum value of i from all the values of i
contained in the region coincident with b. That is,

[i®b](x,y) = max i(x+s,y + ). 2)
(s,t)eb

Because erosion computes the minimum pixel value of i in every neighborhood of (x,y) that is
coincident with b, it is expected that the size of bright features in i will be reduced, and the size of dark
features will be increased. Figure 2b,f shows eroded images of normal and abnormal data in the “tile”
class of MVTec, respectively. As mentioned above, from these figures, it can be seen that the area of the
dark features is increased in the eroded examples. Similarly, Figure 2c,g shows the results of dilation.
The effects are the opposite of those obtained with erosion. The bright features were thickened, and the

intensities of the dark features were decreased.
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Figure 2. Morphologically transformed images in the “tile” class of MVTec [7]: (a) normal image;
(b) eroded normal image; (c) dilated normal image; (d) morphological gradient of a normal image;
(e) abnormal image; (f) eroded abnormal image; (g) dilated abnormal image; (h) morphological gradient
of an abnormal image.
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2.1.2. Morphological Gradient

To obtain the morphological gradient of an image, dilation and erosion can be used in combination
with image subtraction. In this paper, this operation is denoted as follows:

iob=(i®b)— (iob). 3)

Because the dilation thickens regions in an image and the erosion shrinks them, the difference
between them highlights the boundaries between areas. Therefore, an image in which the edges
are emphasized and the homogeneous regions are suppressed has a “derivative-like” (gradient)
effect. Figure 2d,h shows morphological gradient images of normal and abnormal data, respectively.
Especially in Figure 2h, it can be seen that this morphological transformation emphasizes the
cracked area.

2.2. Deep Anomaly Detection via Morphological Transformations

The proposed algorithm aims to train the deep neural network with the morphological features
of normal data through a self-supervised learning strategy. To achieve this goal, we propose the
training of a deep neural network F to discriminate between the morphological transformation types
applied to an image that is given as input. Specifically, we define a set of N discrete morphological
transformations, N, discrete values for kernel width, and N3 discrete values for kernel height. In other
words, the proposed self-labeled dataset is a multi-class dataset that consists of NjN,;N3 classes.
For clarification, we denote a kernel b of size 1y X n3 as by, »,. Thus, we define a set of N1 N, N3 discrete
morphological transformations as follows:

N1,N2,N3
G ={g(In1,n2,m3)},) 215050 et 4)
where g(.|n1,n,n3) denotes application to image i of the morphological transformation with
multi-class label {17, n, n3}, which produces the transformed image i"1"2"3 = ¢(i|nq, ny, n3).

The deep neural network F takes a transformed image i"12"% (where the label {n%,n},n}} is
unknown to F) an input. After that, it produces a probability distribution of softmax responses over all
possible morphological transformations, which is denoted as follows:

gk gk ok gk gk ok N1,N2,N3
F(i"M72M5]9) = {FMm2ms (1m139) S N (5)
where F"275(i"M275|0) is the predicted probability for morphological transformation with

{n3,n},n3} and 6 denotes the parameters of F.
Consequently, the proposed objective function is as follows:

min L 37 (=L 5 tog(en (rininsio)) - L 3 og(emininioy) - L og(Em(ininiie)) ), ©
0 3T =\ N = N, = N; A= '

where F (i"1712%3|0), F"2 (i"1127%3|0), and F"3(i"1"2"3|9) denote the predicted probability for n}, 3,
and 13, respectively. Through the above formulation, we force the deep neural network to learn the
morphological features of normal images by simultaneously predicting both transformation type and
kernel size. Specifically, training to predict kernel size encourages the proposed algorithm to learn
useful morphological features in real-world industrial deep anomaly detection. In Figure 3, the overall
architecture of the proposed method is presented.
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Figure 3. The proposed deep anomaly detection aims to distinguish abnormal data using the
morphological features of normal data acquired during the training procedure. Therefore, if a given
morphologically transformed datum generates a high prediction error, it can be considered abnormal.

3. Experimental Results

In this section, the deep anomaly detection experiments were performed to verify the performance
in industrial inspection. In addition, to show the superiority of the proposed method over the existing
algorithm, which is designed to lean the semantic features of normal data, a performance comparison
with [2] is reported. The backbone model of the proposed method is ResNet-18 [10]. In the experimental
results, there are three types of the proposed method for verifying the influence of the kernel size
learning: type 1: ny € {1,28,56},n3 € {1,28,56}, type 2: np € {8,28,56},n3 € {8,28,56}, and type 3:
ny € {1,8,28,56},n3 € {1,8,28,56}. The proposed algorithm was actualized using PyTorch in a GPU
implementation [11]. We performed experiments with an RTX 2080Ti 11GB GPU and an Intel i7 CPU.

Deep Anomaly Detection on Industrial Dataset

In Table 1, we present the overall experimental results of the proposed method on the
representative industrial anomaly dataset, MVTec [7]. From the experimental results, it can be verified
that the proposed self-supervised learning designed to capture salient features of normal data achieves
superior performance compared to the semantic-feature-based deep anomaly detection. Interestingly,
in a performance comparison experiment among the proposed method’s three types, although the type
1 case model achieved faster convergence than the other cases, it produced the lowest performance.
This observation implies that creating an easily self-labeled dataset in self-supervised learning does
not help to lead the deep neural network to where we intended. This phenomenon was proved
inductively through the experimental results of the type 3 case. These overall experimental results
prove that utilizing morphological image features improves performance in real-world industrial
problems. The proposed method can also verify anomalies by inferencing a neural network, which
takes a processing time of almost 0.0125 s. In other words, it has low computational complexity.

Table 1. Comparison of the area under the receiver operating characteristic (AUROC, %) performance
between [2] and the proposed algorithm.

Class Bottle Cable Capsule Carpet Grid Hazelnut Leather
[2] 83.10 77.81 75.31 38.12 31.47 67.14 64.10
Ourtypel 8786  76.89 77.50 57.22 15.62 68.71 39.67
Ourtype2 8841 7755 69.92 53.97 2991 62.29 66.58
Our type3  95.16 80.34 73.08 57.91 29.99 68.04 82.88

Class Pill  Screw Tile Toothbrush  Transistor Wood Average
[2] 6217  27.73 52.13 82.73 88.25 84.30 64.18
Ourtypel 50.60  28.06 84.70 93.33 77.92 85.44 63.17
Ourtype2 51.72  46.96 92.71 70.22 84.04 90.96 66.19
Our type3  57.23 61.86 93.58 91.67 83.29 87.37 72.92

4. Conclusions

In this paper, we presented a novel deep anomaly detection that is proper for real-world industrial
problems. The proposed algorithm designs self-supervised learning for the morphological feature



Proceedings 2020, 67, 21 60f6

representation of normal data. To demonstrate the proposed method’s superiority over the existing
semantic-feature-learning-based methodology, the experimental results for diverse classes in MV Tec
were reported. These experimental results show that the proposed algorithm provides an 8.74%
higher AUROC performance than the target method with 0.0125 s of processing time. Conclusively,
the proposed algorithm achieves high accuracy and low computational complexity simultaneously in
real-world industrial anomaly inspection applications. We leave the incorporation of the proposed
algorithm with the semantic-feature-based algorithm for future work.
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