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Abstract: A long-period fiber grating (LPFG) with maximum enhancement of evanescent field has 
been designed and fabricated, along with theoretical modeling, by working near the turn-around 
point (TAP) of the lowest order symmetric cladding mode (LP0.2 cladding mode). The LPFG was 
fabricated using a point-by-point inscription technique and it was characterized in terms of 
surrounding refractive index (SRI) within the range of 1.333 to 1.3335 using a thermostated flow-
cell. This closed cell, made of poly(methyl methacrylate) (PMMA), was designed for better handling 
of the sensor, because during the fabrication process, the diameter of the LPFG was reduced up to 
~20 µm by chemical etching, for the maximum enhancement of the evanescent field. The sensitivity 
of dual peak resonance of the LP0.2 cladding mode near TAP was measured and resulted to be ~8751 
nm/SRIU with a resolution of the order of 10−5 RIU. The sensor was further used for the label-free 
immunosensing application by the implementation of Immunoglobulin G (IgG)/anti-
Immunoglobulin G (anti-IgG) bioassay in human serum on the grating region inside the 
thermostated closed flow cell. 
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1. Introduction 

Long-period fiber gratings (LPFGs) are turning out to be promising bio-chemical sensors for 
their ability to sense surrounding refractive index (SRI) changes [1–4]. In most of the bio-chemical 
applications, SRI is ~1.333 [5–7], with the bioanalytes dissolved in aqueous solutions. However, the 
sensitivity of the sensor in this RI range is not very high [8]. Different methodologies have been 
developed by the researchers throughout the years to enhance the sensitivity of the sensor, such as 
operating around mode transition [5,9–12], operating near cladding modes (CMs) turn-around point 
(TAP) [13,14], and enhancement of evanescent field of CMs [13,15,16]. The combination of these 
methodologies has also been developed [17–22]. Recently, it has been shown that by reducing the 
cladding diameter of an LPFG, a lower-order CM (dispersed CM) can be obtained near TAP [18,23]. 
The dispersed lower-order CM becomes more sensitive than the normal higher-order CM near TAP 
due to the enhancement of the evanescent field [18,23]. In this work, enhancement of sensitivity of 
the LPFG is achieved by the combination of two methodologies: (1) Maximum enhancement of the 
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evanescent field and (2) working near the TAP of a CM. A LPFG is fabricated in 125 µm single mode 
fiber and the cladding diameter is reduced up to ~21 µm to obtain the lowest order dispersed CM 
(LP0.2) so as to attain the maximum enhancement of the evanescent field and of the TAP of the LP0.2 
CM. By theoretical modelling, grating period and refractive index modulation is optimised. A closed 
flow cell is fabricated to analyze the sensitivity of the sensor in order to avoid the problems associated 
to both fragility and difficult handling. The sensitivity is found out to be 8751 nm/SRIU within the RI 
range 1.333–1.3335 for the dual peak resonance of LP0.2 CM. Moreover, a label free immunoassay 
using IgG/ anti-IgG interaction was performed using the sensor and the specificity of the sensor was 
confirmed by a negative control test using human serum.  

2. Materials and Methods 

2.1. Materials 

Hydrofluoric acid (HF), sodium chloride (NaCl), ethanol (EtOH), goat anti-mouse IgG, bovine 
serum albumin (BSA), and the reagents for phosphate buffer saline (PBS, 0.01 M pH 7.4) preparation 
were purchased from Merck Life Science (Milan, Italy). Mouse IgG was from Thermo Fisher Scientific 
(Milan, Italy). Pooled normal human serum was from HyTest Ltd. (Turku, Finland). 

2.2. Methods 

The LPFG was fabricated within a Fibercore PS1250/1500 B/Ge co-doped photosensitive fiber 
with a KrF excimer laser (Lambda Physics Compex 110) by using the point-by-point inscription 
technique. The period of the LPFG was Λ= 246 µm and the number of grating planes was 123, with a 
resulting calculated grating length of 30.012 mm. The period was optimized using theoretical 
modeling in such a way that the left peak of the dual resonance of the LP0.2 can be obtained in C band 
in water medium after cladding diameter reduction. Detailed calculation is shown in our previous 
work [24]. The LPFG characterization setup was composed of a SLED source (FiberLabs Inc. SLD-
1310/1430/1550/1690-10) and an optical spectrum analyzer (OSA; Anritsu MS9030A/9701C). The 
minimum wavelengths were calculated by fitting the resonant band with a Lorentzian function. The 
bandwidth was considered from 1300 nm to 1700 nm depending on the SLED source band and on 
the cut-off wavelength of the used fiber (1209 nm). 

After inscription, chemical etching of the fiber was done by dipping it in 20% HF solution; the fiber 
was kept straight during this process in order to avoid bending induced perturbations caused by the 
reduced fiber diameter. 

For a better handling of the sensor and to eliminate the effect of surrounding temperature 
fluctuation during the SRI sensitivity measurement and also during immunoassay, the LPFG was 
inserted inside a thermostated closed flow cell made of poly(methyl methacrylate) (PMMA). Detail of 
the flow cell and the insertion procedure was described in [24]. 

SRI sensitivity analysis was performed using NaCl solutions in water (0.0–0.5% w/v) (RI in the 
range 1.333 to 1.3335 [25]) and the immunoassay was carried out using mouse IgG/Anti mouse IgG 
interaction [10]. BSA was used to block the nonspecific adsorption. The specificity of the sensor was 
confirmed using human serum as negative control. Both the SRI sensitivity analysis and the 
immunoassay were performed inside the flow cell. 

3. Results and Discussion 

The LPFG was fabricated by using the procedure described in Section 2.2. The diameter of the 
etched LPFG was measured to be ~21 µm. The spectra of the LPFG after inscription and after cladding 
diameter reduction is shown in Figure 1. It was clearly observed that after cladding diameter 
reduction, the left peak of LP0.2 CM was generated within C band. 
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Figure 1. Spectral measurement of long-period fiber grating (LPFG) after inscription and after 
cladding diameter reduction. 

The SRI sensitivity analysis was done using the procedure described in Section 2.2 and it was 
found out to be 8751 nm/SRIU as shown in Figure 2. 

 
Figure 2. Wavelength shift of dual peak of LP0.2 cladding mode (CM) near the turn-around point 
(TAP) as a function of surrounding refractive index. 

To perform the immunoassay, mouse IgG (1000 µg/mL in PBS) was covalently bound on the 
sensor surface by following the procedure described in [10]. After blocking the non-specific sites on 
the sensor surface using BSA, a negative control measurement was performed using human serum 
and then two concentrations of anti-mouse IgG (0.0001 µg/mL and 0.001 µg/mL) were used to carry 
out the assay. After each step, rinsing with PBS was performed, and every measurement was also 
done in PBS solution. The dual peak resonant wavelength shift due to the exposure of the sensor to 
different concentrations of anti-mouse IgG is shown in Figure 3. 
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Figure 3. Wavelength shift of dual peak of LP0.2 CM at different concentration of anti-IgG. 

4. Conclusions 

A reduced cladding diameter LPFG sensor was fabricated with maximum enhancement of 
evanescent field along with the combine effect of the TAP by working with the lowest order of 
symmetric CM (LP0.2 CM) near TAP. The sensor was characterized by SRI sensitivity and a label free 
immunoassay was performed using IgG/ Anti IgG interaction in a closed thermostated flow cell. 
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