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Abstract: The determination of protease activity is very important for disease diagnosis, drug 
development, and quality and safety assurance for dairy products. Therefore, the development of 
low-cost methods for assessing protease activity is critical. Here, we demonstrate that an acoustic 
wave-based biosensor operated in the thickness-shear mode (TSM) enables the low-cost detection 
of protease activity in real time. The TSM sensor was based on a protein substrate (PS) β-casein 
immobilized on a piezoelectric quartz crystal electrode. The β-casein layer was immobilized onto a 
gold surface by a carboxylate terminated self-assembled monolayer (SAM) of 11-mercaptoundecanoic 
acid (MUA). The carboxylic acid terminal was activated by the reaction of a mixture of water- 
soluble N-(3-Dimethylaminopropyl)-N0-ethylcarbodiimide (EDC) and N–Hydroxysuccinimide 
(NHS) on the electrode surfaces. We demonstrated that β-casein can form a stable assembly on a 
piezoelectric quartz crystal electrode. After an enzymatic reaction with trypsin, it cleaved the 
surface-bound β-casein substrate, which increased the frequency of the crystal in a sigmoidal 
manner. Trypsin was detected in the range of concentrations from 1 to 50 nM. The limit of detection 
was 0.2 nM. Initial reaction rates measured at different enzyme concentrations have been used to 
construct a calibration curve. Considering the results obtained, we believe that the TSM biosensor 
is a useful tool for protease analysis. 
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1. Introduction 

Peptidases, more frequently referred to as proteases, are a group of enzymes that irreversibly 
hydrolyze a peptide bond in an amino acid sequence through the nucleophilic attack and 
subsequent hydrolysis of a tetrahedral intermediate. They play critical roles in biological and 
physiological processes such as blood clotting, digestion, and a variety of cellular activities [1,2]. 
Proteases are highly involved in the dairy industry as well, where their activity is directly linked to 
the shelf life of dairy products [3]. Owing to their specificity, protease activity-based nanosensors are 
used in various diseases diagnostics [4–6]. Moreover, inhibitors of these proteases are successfully 
employed as therapeutic agents [2,7,8]. 

Trypsin is an extremely important serine protease of the chymotrypsin family. It is produced in 
the pancreas and it plays crucial roles in the small intestine. Trypsin catalyzes the hydrolysis of 
consumed proteins and activates protease proenzymes as part of the digestive system. It is highly 
specific toward the cleavage of peptide bonds at the carboxyl side of lysine or arginine. Trypsin is 
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often used as a model protease because it is inexpensive and readily available [9–11]. Standard 
assays for the detection of proteases such as trypsin usually utilize fluorogenic and chromogenic 
substrates. Those assays are useful, practical, and highly sensitive. However, spectroscopic assays 
are incapable of measuring protease activity in highly colored and turbid samples such as cells, 
tissue lysates, or milk. Therefore, the development of a new label-free method for detecting protease 
activity without interruption from impurity inclusions is needed [1,10,12]. 

The thickness-shear mode (TSM) acoustic wave biosensor may present an attractive platform 
for the development of cost-effective and highly sensitive techniques for trypsin detection. The use 
of TSM devices is a well-established method for the detection of mass changes due to depositions or 
chemical/biochemical reactions on its surface as well of changes in the viscoelastic properties of the 
contacting material. Therefore, the TSM biosensor is a sensitive tool for the study of molecular 
interactions on surfaces [13]. Moreover, the coupling of a flow injection analysis (FIA) system to a 
TSM sensor device permits the monitoring of kinetic processes that take place at the surface of the 
sensor [14]. The TSM device applies a high frequency AC voltage across an AT-cut quartz crystal on 
which, due to the piezoelectric effect, an acoustic shear wave is generated and propagated through 
the sensing layer perpendicular to the surface of the crystal [15]. It has a low noise level and higher 
Q-factor in clinical liquids such as tissue fluids and serum, since the shear acoustic waves do not 
propagate in liquids. Compared to other common biosensing technologies, TSM electroacoustic 
resonators have the combined advantages of high sensitivity and low cost, label-free detection of 
analyte, and simple operation without the requirement of bulky detection systems [16]. Moreover, in 
contrast with traditional quartz crystal microbalance (QCM) techniques, the analysis of complex 
impedance spectra allows for the receipt of information about changes in the properties of layers 
even with the adsorption of relatively small molecules that do not contribute to the mass but only to 
the viscoelastic properties of the layer [17]. The multi-harmonic QCM method has previously been 
applied for the detection of plasmin and trypsin at the surface of β-casein layers [18]. This method 
allows for the detection of these proteases at the sub-nM level. However, the possible contribution of 
viscoelastic effects has not been analyzed. 

In this work, we designed an analytical method based on the TSM biosensor for the real-time 
and label-free detection of trypsin. For this purpose, a SiO2 surface was modified by 
mercaptoundecanoic acid (MUA) for further immobilization of a native substrate of trypsin and a 
common protein of milk, β-casein, on a TSM crystal. Using TSM frequency responses, we 
investigated the assembly and stability of self-assembled β-casein layers on a quartz crystal 
electrode and measured the dynamics of TSM-response and changes in motional resistance during 
casein cleaving by the protease. The motional resistance allows for the analysis of trypsin’s possible 
contribution to the molecular slip at the surface during the cleavage of β-casein. Considering the 
results obtained, we believe that the proposed approach constitutes a useful tool for protease 
analysis. 

2. Materials and Methods 

2.1. Reagents 

Ultrapure water obtained by reverse osmosis (Thermo Scientific, Waltham, MA, USA, ρ = 18.2 
MΩ cm) was used for the preparation of all aqueous solutions. As a medium, 10 mM, pH 7.4 
phosphate buffered saline (PBS) was used (10 mM Na2HPO4, 2 mM KH2PO4, 2.7 mM KCl and 137 
mM NaCl), prepared from tablets (Sigma-Aldrich, Darmstadt, Germany). In the experiments, 
trypsin (Sigma-Aldrich, Mw ≈ 23,800 g/mol) served as a model protease. The concentration of bovine 
β-casein (≥98%, Sigma-Aldrich, Mw ≈ 24,000 g/mol) solutions, prepared in PBS, was 0.5 mg/mL. 
11-mercaptoundecanoic acid (MUA, Sigma-Aldrich, Mw = 218.36), 
N-(3-Dimethylaminopropyl)-N0-ethylcarbodiimide (EDC, ≥98%, Sigma-Aldrich, Mw = 191.70), and 
N–Hydroxysuccinimide (NHS, Sigma-Aldrich, Mw = 115.09) were employed for casein 
immobilization. All experiments were carried out at 20 °C. 
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2.2. Cleaning and Modification of Gold Electrode-Coated Quartz Crystals 

Symmetric gold electrode-coated quartz discs (Laptech Precision Inc., Bowmanville, ON, 
Canada, working area, 0.2 cm2) with a fundamental frequency of 9 MHz were soaked in a solution of 
1% sodium dodecyl sulphate (SDS, Sigma-Aldrich, Mw = 288.37) for 30 min. The discs were then 
rinsed in a new portion of SDS for two minutes. Thereafter, they were rinsed three times with 
deionized water. Subsequently, they were rinsed three times in acetone. This process was 
successively repeated with ethanol and methanol. The discs were then dried with a gentle stream of 
nitrogen gas and plasma cleaned for three minutes. Further, the cleaned TSM crystals were 
immersed in 2 mM MUA and were incubated for 16 h to form a self-assembled monolayer. After this 
step, the crystals were rinsed several times with deionized water and dried under nitrogen, followed 
by incubation for 20 min in a 20 mM EDC and 50 mM NHS mixture in order to activate the 
carboxylic groups of MUA for further immobilization of bovine β-casein on the gold electrode of the 
quartz sensor. 

2.3. TSM Measurements 

AT-cut 9.0 MHz gold electrode-coated quartz crystals were incorporated into a home-built 
flow-through thickness shearing mode (TSM) acoustic wave device sensor system. The setup and 
general configuration of the flow-through system is described in reference [14]. One side of the 
crystal was exposed to liquid, the other one to air. The liquid was introduced using a syringe pump. 
Runs were performed with the crystals in the vertical position and at ambient temperature. The 
modified crystal was secured in the holder using two O-rings. The gold electrodes were kept in 
contact with the gold leads in the holder. 

Resonance frequency f and motional resistance Rm were determined based on the Butterworth–
van Dyke (BVD) model of a quartz crystal resonator [14]. The value of f represents the energy 
storage and reflects the mass changes of the oscillating layer, while Rm is related to the dissipation of 
energy and provides evidence of changes in the shearing viscosity of the layer [17]. The measuring 
procedure was as follows. Each slide was flushed through with PBS at a rate of 50 μL/min until a 
stable baseline was achieved (45 min), using the flow-through injection system. This step was 
necessary to remove any weakly adsorbed molecules of SAM at the TSM electrode surface. Next, the 
pump was momentarily stopped while the sample input tube was slowly placed into a β-casein 
solution (0.5 mg/mL in PBS) to minimize pressure effects to the system. β-casein was introduced at a 
rate of 50 μL/min for approximately 45 min. Once again, the pump was momentarily stopped, and 
the sample input tube was slowly placed back into the PBS solution. The PBS was re-introduced at a 
rate of 50 μL/min to remove any loosely bound casein until a stable baseline was achieved. Changes 
to the resonant frequency f and motional resistance Rm were noted. For proteolysis measurements, 
solutions with various concentrations of trypsin in PBS were flowed over TSM crystals with an 
immobilized β-casein layer at 50 μL/min flow rate. Trypsin and β-casein solutions were freshly 
prepared before each experiment. 

2.4. Data Analysis 

Origin version 7.5 software (Microcal Software Inc., Northampton, MA, USA) was used for 
curve-fitting and data analysis. Data were obtained from a minimum of 3 independent experiments. 

3. Results and Discussion 

In this study, we have monitored the activity of trypsin at various enzyme concentrations (from 
1 to 50 nM) in the hydrolysis of a β–casein layer immobilized onto a gold surface by a carboxylate 
terminated self-assembled monolayer (SAM) of MUA using a TSM technique. MUA strongly binds 
to gold through thiol groups in a high level of molecular dimension order forming a stable SAM [19]. 
The formation of SAM itself enables the coupling of activated carboxylic groups with free amino 
groups in the β–casein, which is an effective method for immobilizing proteins on a gold surface [20–
22]. 
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Figure 1 illustrates a typical frequency-time plot obtained during the TSM experiment. Region 
1–2 of the plot corresponds to the filling of the cell with buffer. The TSM crystal exhibited the sharp 
drop after exposure to casein, indicating the adsorption of the protein to the quartz crystal/liquid 
interface (region 2–3). The adsorption reached equilibrium in about 15 min (region 3–4). The 
frequency shift after the adsorption of the protein to the surfaces of the crystal was around −104.04 
Hz and decreased to −75 kHz after the crystal was rinsed with buffer solution (region 5–6). The 
frequency did not recover to the original value obtained when the crystals were exposed to the 
buffer. This suggests there were two modes of casein binding to the SiO2 surface, a tightly bound 
layer and a weakly bound layer, and that only loosely bound casein layers were removed during the 
PBS washing [23]. Because the increase in fundamental frequency after PBS washing was so small, 
we can speculate that the majority of β-casein adsorbed on the SiO2 formed a stable immobilized 
layer, which makes it attractive for its potential applications in biosensors for the detection of 
protease activity. Further, the buffer was changed to a trypsin solution. The frequency increased 
asymptotically to reach a stable value indicating that the proteolysis process occurred, 
corresponding to the cleavage of casein (region 6–7). Then, Δf vs. time curves were recorded for 
different trypsin concentrations, each one with a new quartz crystal and a newly adsorbed β-casein 
layer. 

 
Figure 1. Typical frequency-time plot obtained during TSM experiment. 1–2: Stable baseline; 2–3: 
Adsorption of β-casein to the quartz crystal/liquid interface; 3–4: Adsorption of β-casein completed; 
4–5: Stabilization of signal; 5–6: Washing with buffer; 6–7: Cleavage of β-casein layer by trypsin. In 
this experiment, 10 nM trypsin was used. 

Earlier works indicated that the Sauerbrey Equation (1) can be applied to obtain a rough 
estimate for the surface concentration of the adsorbed β-casein layer [18,24,25], which is valid only 
for the specific case of a crystal being loaded with rigid, well adhered layers in air with a minor 
contribution to the surface viscosity [14,26]. Therefore, for simplicity, yet with an awareness of the 
limitations stated above, Equation (1) was used to estimate the number of proteins on the surface 
(ΓQCM, ng/cm2) [24]. The average value of the frequency shift after the adsorption of the protein to 
hydrophilic surfaces was −165.26 ± 47.7 Hz. This average value decreased to −151.6 ± 54 Hz after 
rinsing with the buffer. Using these values, as well as S = 0.2 cm2 for the area of the electrode, ρ = 
2.648 g/cm3 for the density of quartz, and μ = 2.947 × 1011 g/cm.s2 for the shear modulus of an AT-cut 
quartz crystal, f0 = 9 MHz base frequency, a surface concentration of 165 ng/cm2 was obtained.     𝛤ொ஼ெ  = ିௌ√µ௣௱௙ଶ௙బమ , (1)

This is in good agreement with earlier experimental works based on ellipsometry that reported 
200–300 ng/cm2 for a full-coverage monolayer of β-casein [28,29]. Furthermore, QCM studies by 
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Tatarko and co-workers estimated that the immobilized β-casein monolayer has a mass density of 
350 ng/cm2 [18]. These results support the interpretation that the value of 165 ng/cm2 obtained by 
TSM measurements corresponds to monolayer formation. 

Krisdhasima et al. developed a model for the irreversible adsorption of proteins consisting of 
two steps [30]. This model included an initial reversible adsorption step, followed by a 
surface-induced conformational change yielding an irreversible adsorbed form. Romanszki and 
co-workers suggested an adsorption mechanism of β-casein on hydrophilic quartz expressed in the 
form of a triple exponential decay with three-time constants [27]. In our case, data from β-casein 
assembly on hydrophilic quartz can be well fitted with a single exponential decay curve with only 
one-time constant τ1 (Equation (2)). 𝛥𝑓 = 𝛥𝑓ଵ exp൫− 𝑡 𝜏ଵൗ ൯ +  𝛥𝑓௡ , (2)

The fitting parameters are listed in Table 1. Our β-casein adsorption results (Figure 2) are in 
good agreement with previous finding of Tatarko et al., who have demonstrated a single exponential 
behavior of casein during the self-assembly on hydrophilic quartz crystal surfaces [18]. 

Table 1. Fitting parameters of the adsorption of β-casein hydrophilic quartz. 

τ1 (s) Δf1 (Hz) Δfn (Hz) 
186 119.32 −105.15 

 

Figure 2. Adsorption curves of β-casein on 11-mercaptoundecanoic acid (MUA)-coated hydrophilic 
quartz crystal in terms of Δf frequency change. The fitted curve marked in red represents the single 
exponential function. 

The response of the casein following the addition of various concentrations of trypsin in terms 
of relative changes of frequency is depicted in Figure 3. Protease exposure occurred at time = 0 min. 
The TSM signal variations were recorded during the exposure of casein to concentrations of trypsin 
varying from 1 to 50 nM. Upon the introduction of trypsin, the frequency rose in a sigmoidal 
manner, which we attribute to the cleavage of the surface-bound β-casein substrate. As expected, a 
higher concentration of trypsin resulted in more rapid proteolysis than a lower concentration of the 
protease. The limit of trypsin detection calculated from the signal to noise ratio was 0.2 nM, which is 
like those obtained by Tatarko et al. [18]. 
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Figure 3. The time profile curves of trypsin activity on β-casein at different trypsin concentrations in 
terms of Δf frequency changes of a thickness-shear mode (TSM) crystal modified by MUA, points 
from TSM measurements, and fitted Hill curves. 

The TSM signal variations were recorded in terms of Rm shifts as well (Figure 4). In all 
experiments, after the addition of trypsin, a decrease in resistance was observed, suggesting the 
cleavage of casein by trypsin. The decrease in motional resistance is associated with a change in the 
viscoelastic properties of the sensing casein monolayer during hydrolysis. The sensing layer became 
more rigid, thus shielding the molecular slipping at the surface [15]. 

 
Figure 4. The time profile curves of trypsin activity on β-casein at different trypsin concentrations in 
terms of changes in motional resistance, ΔRm, of the TSM crystal modified by MUA. 

The trypsin activity curves were analyzed according to the method suggested by Romanzki et 
al. [27]. Curves corresponding to a certain trypsin concentration were fitted with the Hill function 
(Equation (3)) in order to estimate the initial reaction rate of trypsin activity. Δ𝑓 =  Δ𝑓௠௔௫ ௧೙௞೙ା ௧೙, (3)

where Δf max is the final frequency shift after trypsin cleavage, and k and n are fitting parameters. 
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Further, the fitted curves were numerically differentiated, and calibration curve was plotted 
against the trypsin concentration (Figure 5). An inverse Michaelis–Menten (MM) Equation (4) has 
been used to fit the obtained calibration curve, in which the concentration of the interfacial enzyme 
and substrate are interchanged. For further details, see cited reference [27]. Previously, it was 
demonstrated that an inverse MM model can provide a good approximation in systems where the 
enzyme is in excess [31]. In this case, mass conservation is also reversed so that it accounts for the 
substrate rather than the enzyme, leading to a symmetric equation for the initial steady state rate, 
which the authors term an inverse MM equation. ఋ௙ఋ௧  =  𝑣௠௔௫ ஼೅ೃೊ஼ಾା ஼೅ೃೊ, (4)

where ఋ௙ఋ௧ is the rate of change of frequency, 𝑣௠௔௫ represents the maximum rate achieved by the 
system, CTRY is the concentration of trypsin, CM is the characteristic constant equal to the trypsin 
concentration that achieves half of 𝑣௠௔௫ . The fitting of calibration plots corresponding to the 
hydrophilic surface yielded Vmax = 0.1688 s−2 and CM = 24.38 nM. 

 

Figure 5. δf/δt rates of initial frequency change for the TSM crystal determined at different Ctrypsin 

trypsin concentrations. Symbols are experimental data and line is the best fit of Equation (4). 

Within the analyzed concentration range of trypsin, the initial reaction rate of the hydrolysis 
process taking place on the surface of the hydrophilic quartz crystal clearly demonstrated a 
non-linear character with respect to enzyme concentration, indicating that the specific activity of the 
trypsin depends on its concentration within the analyzed concentration range. 

4. Conclusions 

We have shown that β-casein forms a stable monolayer via an 11-mercaptoundecanoic acid 
(MUA) cross-linker at a gold surface. The obtained β-casein layer enabled a detection limit of 0.2 nM 
for trypsin. The hydrolysis of casein immobilized on the gold surface resulted in an increase of 
resonant frequency and a decrease of motional resistance. The obtained results can be considered as 
a first step toward the application of a TSM sensor based on β-casein for the detection of protease 
trypsin activity without the application of optical markers. 
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