Non-Invasive Determination of Blood Glucose Concentration Using a Near-Field Sensor †
Abstract
:1. Introduction
2. Method
2.1. Hand Model
2.2. Sensor Design
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jones, M.; Harrison, J.M. The future of diabetes technologies and therapeutics. Diabetes Technol. Ther. 2002, 4, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Forst, T.; Caduff, A.; Talary, M.; Weder, M.; Brändle, M.; Kann, P.; Flacke, F.; Friedrich, C.; Pfützner, A. Impact of environmental temperature on skin thickness and microvascular blood flow in subjects with and without diabetes. Diabetes Technol. Ther. 2006, 8, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, E.; Manoharan, R.; Koo, T.; Shafer, K.; Motz, J.; Fitzmaurice, M.; Kramer, J.; Itzkan, I.; Dasari, R.; Feld, M. Prospects for in vivo Raman spectroscopy. Phys. Med. Biol. 2000, 45, R1. [Google Scholar] [CrossRef] [PubMed]
- Caduff, A.; Hirt, E.; Feldman, Y.; Ali, Z.; Heinemann, L. First, human experiments with a novel non-invasive, non-optical continuous glucose monitoring system. Biosens. Bioelectron. 2003, 19, 209–217. [Google Scholar] [CrossRef]
- Khalil, O.S. Spectroscopic and clinical aspects of noninvasive glucose measurements. Clin. Chem. 1999, 45, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Heise, H. Non-invasive monitoring of metabolites using near infrared spectroscopy: State of the art. Hormone Metab. Res. 1996, 28, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Gebhart, S.; Faupel, M.; Fowler, R.; Kapsner, C.; Lincoln, D.; McGee, V.; Pasqua, J.; Steed, L.; Wangsness, M.; Xu, F.; et al. Glucose sensing in transdermal body fluid collected under continuous vacuum pressure via micropores in the stratum corneum. Diabetes Technol. Ther. 2003, 5, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Lipson, J.; Bernhardt, J.; Block, U.; Freeman, W.R.; Hofmeister, R.; Hristakeva, M.; Lenosky, T.; McNamara, R.; Petrasek, D.; Veltkamp, D.; et al. Requirements for calibration in noninvasive glucose monitoring by Raman spectroscopy. JDTS 2009. [Google Scholar] [CrossRef] [PubMed]
- Roychoudhury, P.; Harvey, L.M.; McNeil, B. At-line monitoring of ammonium, glucose, methyl oleate and biomass in a complex antibiotic fermentation process using attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy. Anal. Chim. Acta 2006, 561, 218–224. [Google Scholar] [CrossRef]
- Waynant, R.; Chenault, V. Overview of non-invasive fluid glucose measurement using optical techniques to maintain glucose control in diabetes mellitus. IEEE LEOS Newsl. 1998, 12, 3–6. [Google Scholar]
- Khalil, O.S. Non-invasive glucose measurement technologies: An update from 1999 to the dawn of the new millennium. Diabetes Technol. Ther. 2004, 6, 660–697. [Google Scholar] [CrossRef]
- Gabbay, R.A.; Sivarajah, S. Optical coherence tomography-based continuous noninvasive glucose monitoring in patients with diabetes. Diabetes Technol. Ther. 2008, 10, 188–193. [Google Scholar] [CrossRef]
- Guo, X.; Mandelis, A.; Zinman, B. Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry. Biomed. Opt. Express 2012, 3, 3012–3021. [Google Scholar] [CrossRef]
- Hayashi, Y.; Brun, M.A.; Machida, K.; Lee, S.; Murata, A.; Omori, S.; Uchiyama, H.; Inoue, Y.; Kudo, T.; Toyofuku, T.; et al. Simultaneous assessment of blood coagulation and hematocrit levels in dielectric blood coagulometry. Biorheology 2017, 54, 25–35. [Google Scholar] [CrossRef] [PubMed]
Name of Materials | Thickness, mm |
---|---|
Stratum corneum of the epidermis | 0.02 |
Epidermis | 0.04 |
Dermis | 1.83 |
Subcutaneous adipose tissue | 1 |
Vein hand | 4 |
Hand vein wall | 0.5 |
Fat | 6 |
Glucose Concentration, mmol/l | Frequency, GHz | Amplitude, dB |
---|---|---|
1 | 1.07 | −53.85 |
3 | 1.07 | −53.97 |
4 | 1.07 | −54.05 |
5 | 1.07 | −54.16 |
7 | 1.07 | −54.22 |
9 | 1.07 | −54.39 |
10 | 1.07 | −54.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zavyalova, K.; Gorst, A.; Mironchev, A. Non-Invasive Determination of Blood Glucose Concentration Using a Near-Field Sensor. Proceedings 2020, 60, 1. https://doi.org/10.3390/IECB2020-07022
Zavyalova K, Gorst A, Mironchev A. Non-Invasive Determination of Blood Glucose Concentration Using a Near-Field Sensor. Proceedings. 2020; 60(1):1. https://doi.org/10.3390/IECB2020-07022
Chicago/Turabian StyleZavyalova, Kseniya, Aleksandr Gorst, and Aleksandr Mironchev. 2020. "Non-Invasive Determination of Blood Glucose Concentration Using a Near-Field Sensor" Proceedings 60, no. 1: 1. https://doi.org/10.3390/IECB2020-07022
APA StyleZavyalova, K., Gorst, A., & Mironchev, A. (2020). Non-Invasive Determination of Blood Glucose Concentration Using a Near-Field Sensor. Proceedings, 60(1), 1. https://doi.org/10.3390/IECB2020-07022