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Abstract: Go-arounds (GAs) are standard air traffic control procedures during which aircraft approach
a runway but do not land. The incidence of a GA can subsequently affect the workload of flight
crews and air traffic controllers, and might impact an airport runway’s throughput capacity. In this
study, two different modeling methods for predicting the occurrence of GAs based on open-source
Automatic Dependent Surveillance–Broadcast (ADS-B) and meteorological data are presented.
A macroscopic model quantifies the probability of a GA within the next hour for an airport by
applying a generalized additive model. A microscopic model employs a number of machine learning
classifiers on trajectories of aircraft on approach in order to predict if a GA will be performed. Even
though the results of the macroscopic model are promising, the information currently available to
predict the probability of a GA is not detailed enough to achieve satisfactory predictions. Similarly,
the microscopic model is capable of predicting 50% of all GAs, with false positive rate below 7%.
Despite the limitations of the quality of the results, the authors are convinced that both modeling
methods can be inspiring to other researchers and provide useful insights into the airport system
under scrutiny.

Keywords: OpenSky network; go-around; prediction; machine learning; generalized additive
model; ADS-B

1. Introduction

Go-arounds (GAs) and missed approaches are air traffic control (ATC) procedures where an
aircraft approaches a runway but does not land [1,2]. Common causes for GAs are runways occupied
by other aircraft (e.g., due to slow departures) or unstable approaches (UAs), for which the pilots
deem the approach not to be within safety margins. UAs are often caused by poor visibility, by
unfavorable winds (e.g., crosswinds and tailwinds), or due to approaches flown “too fast, too low, and
too close” [3,4].

Internal research at Airservices Australia (the Australian air navigation services provider) has
shown that the probability of one GA is 18 times higher within ten minutes of a previous GA.
Additionally, the probability of a UA can be accurately measured from energy loss variation [5]
and glide slope deviation. Airservices’ exploratory work shows the potential of predicting GAs.
Furthermore, it highlights the need for further research to determine prediction methods that can be of
practical use and that have the potential to be operationalized.

In this paper, methods to predict the probability of GAs are explored. As such, GAs on runway 14
of the Zurich International Airport, Switzerland are predicted. GAs on runway 14 are of particular
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interest, since the published GA procedure interacts with the standard instrument departure procedures
for runway 16, as illustrated in Figure 1. This interaction, which produced an aircraft proximity event
in 2003 [6], is well known to the relevant stakeholders. Subsequently, mitigation procedures have been
put in place, which ensure the separation between GAs on runway 14 and departures on runway 16.
However, these procedures limit the capacity of the airport. Consequently, predicting GAs on runway
14 could help increase capacity.

Figure 1. Overview of the situation at Zurich airport. Blue and green: departures on runway 16, red:
go-arounds (GAs) on runway 14.

In this paper, two different approaches to predict GAs are presented: one on the macroscopic
level and one on the microscopic level. Both methods presented are entirely based on open-source
data, namely Automatic Dependent Surveillance–Broadcast (ADS-B) data and meteorological data.
The macroscopic model estimates the probability of a GA in the next hour based on information that is
available at the time of prediction. To the best knowledge of the authors, such a model has not been
presented in the literature. The microscopic model predicts for each landing aircraft at a given cut-off
point on the approach whether a GA will be performed after this point or not. A microscopic approach
was pursued by Searidge using neural networks to continuously calculate the probability of a GA for
each landing aircraft. However, no details about the methods or the performance of the system have
been published [7,8].

2. Pre-Processing and Go-Around Detection

In this study, ADS-B trajectories provided by OpenSky Network ([9]) were used. The data cover
the period between 1 January, 2017 and 30 June, 2020, and were re-sampled at 5 s intervals. Trajectories
may contain outliers and noise, which were subsequently removed with a Savitzky–Golay filter ([10]).
The barometric altitude of the observed flights is affected by the atmospheric pressure at the time
of observation. This deviation was compensated for by computing the geometric altitude for each
landing trajectory using the known elevation of runway 14. Furthermore, the trajectory data were
augmented with aircraft data from [11] and meteorological data from [12].

To classify trajectories, a simple and case-specific rule-based approach was used, given its
simplicity and robustness:
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1. Landings are defined as trajectories, whose last five observations are (i) within a polygon
demarcating Zurich Airport’s limits and (ii) below 600 m above mean sea level.

2. Landings on runway 14 are defined as a subset of landings observed at Zurich Airport. To be
classified as a landing on runway 14, trajectories (i) stay for at least 5 min within a specifically
defined approach corridor (see Figure 2) and (ii) have a heading between 126 and 146 degrees
during this time.

3. GAs are defined as trajectories, which (i) first perform an approach, (ii) leave the approach
corridor, and subsequently fly for more than 6 min at an altitude above 800 m above mean sea
level. For alternative GA classification methods, the reader is referred to Proud [13].

To this end, almost 250,000 landings on runway 14 were identified, of which with 850 were
GAs. By visually inspecting the GA data, false positives and outliers (e.g., instrument landing system
(ILS) calibration flights, training flights, waiting loops on approach, noisy measurements, etc.) were
eliminated, which led to 715 GAs being selected for this analysis (i.e., the GA rate is approximately 3
GAs per 1000 landings).

Figure 2. Runway 14 at Zurich Airport and its approach corridor.

3. Macroscopic Model: Prediction of GAs in the Next Hour

The aims of the macroscopic model are twofold. First, it allows valuable insights into the airport
system under scrutiny by quantifying the probability of having a GA within the next hour. Second,
the model is a helpful tool to facilitate short-term capacity planning for an airport system. For example,
a decreased probability of having a GA in the next hour might justify a smaller temporal separation
between landing and departing traffic (clearly, a lower probability alone is not enough to decrease
the separation between landing and departing traffic; other factors, such as the risk of a wake vortex
encounter, must be taken into account as well). The macroscopic model relies exclusively on data
that are available at the time of prediction. As such, inputs into the model are the expected traffic
of the next hour (e.g., number of landing aircraft, fleet mix, etc.) and meteorological observations
derived from METAR data(METAR is a standardized format for reporting meteorological observations
at airports) [12].

3.1. Modeling

The probability of having at least one GA in the next hour is modeled with a generalized additive
model (GAM). The proposed GAM uses a Bernoulli distribution to model the binary response yi ∈
{0, 1} or, expressed in practical terms, yi ∈ {no go-around, go-around}. The probability of “success”
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(i.e., a GA) is typically expressed as being conditional on the predictors as pi = P(yi|Xi) = E[yi|Xi],
where the subscript i indicates the i-th observation, pi is the probability of success of the i-th observation,
and E[·] is the expected value. For example, a non-linear logistic regression model can be expressed as

log
(

pi
1− pi

)
= β0 + β1xi1 + β2xi2 + f3(xi3) + f4(xi4). (1)

In Equation (1), the left-hand-side term is called the logit or log-odds function of pi, and links the
predictor ηi = β0 + β1xi1 + β2xi2 + f3(xi3) + f4(xi4) to the conditional expectation pi. The predictor
ηi is an additive model that can contain both linear and non-linear terms (with the subscript j).
In Equation (1), the linear terms use parameters β j, while the non-linear terms are expressed with
smooth functions f j(xj). The flexibility to model a predictor’s effect on the dependent variable as an
additive model makes GAMs ideal for data exploration and for finding suitable model structures.
Similarly to linear regression models, GAMs provide statistics on the significance of predictors and
other metrics. GAMs are fitted by penalized maximum likelihood. For further information on GAMs,
the interested reader is referred to [14,15].

It is worth mentioning that maximum likelihood logistic regression yields asymptotically unbiased
estimates. In case of imbalanced data, this assumption might not hold because of the “finite sample
and rare events bias” [16]. Particularly, this is problematic when only few observations of the rarer
class are available. In this study, 819 h were observed during which at least one GA was performed,
out of 15,791 h during which landings on runway 14 were conducted. Even though only about 5% of
the observed operational hours contain GAs, the absolute number is assumed to be sufficient according
to the simulation studies in [16].

The macroscopic model is based on environmental and aircraft-related predictors that are assumed
to be knowable in advance (see Table 1). The GA prediction was made every full hour for the periods
where at least one landing was observed on runway 14. The environmental predictors used in the
model are based on the last METAR observation available before the prediction, usually at 10 min
before the hour. Aircraft-related predictors consist of the number of landings in the next hour as well
as an indicator describing the observed probability of a GA for a group of aircraft types (see Table 1).

A suitable model for predicting the probability of having at least one GA in the next hour is:

log
(

pi
1− pi

)
= β0 + β1 · thunderstormi + β2 · acTypeshighi

+ β3 · acTypesuki
+ β4 · nhomecarrieri

+

f1(nlandingi
) + f2(visi) + f3(crosswindi) + f4(headwindi).

(2)

Table 1. Predictors and their names in the model formula.

Formula Name Predictor

thunderstorm Binary factor, true if a thunderstorm was observed (thunderstorm ∈ {0, 1})

acTypeshigh

Number of landings of aircraft types classified as high GA probability in the
next hour as a fraction of the total number of landing aircraft
(acTypeshigh ∈ [0, 1])

acTypesuk

Number of landings of aircraft with unknown GA probability landing in the
next hour as a fraction of the total number of landing aircraft
(acTypesuk ∈ [0, 1])

nhomecarrier Number of landings of home carriers in the next hour (nhomecarrier ∈ N)
nlanding Number of landings in the next hour (nlanding ∈ N)
vis Visibility in meters
crosswind Absolute crosswind component in knots

headwind Headwind component in knots; positive indicates headwind, negative
indicates tailwind
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3.2. Results

The estimated coefficients for the linear terms, which can be interpreted in the same way as in a
linear regression model, are shown in Table 2. For example, the model predicts, all else being equal,
that the presence of a thunderstorm in the vicinity of the airport increases the odds of having a GA by
a factor of exp(0.95) = 2.6. The non-linear terms can also provide useful insights into the system and
are shown in Figure 3.

Table 2. Linear predictors and their estimated values.

Formula Name Estimate

β0 (Intercept) −3.2
β1 (thunderstorm) 0.95
β2 (tchigh) 0.68
β3 (tcuk) 0.23
β4 (nhomecarrier) 0.013

For example, the model predicts that the effect of headwind on the probability of having a GA
is highly non-linear. It can be seen that the probability of a GA increases substantially for tailwinds
(negative headwind) exceeding 4 knots. Similarly, a crosswind of up to about 5 knots does not affect
the probability of a GA, but that probability increases non-linearly after that. The interpretation of
the effect of the number of landings is less clear, since the confidence intervals are quite large. These
large intervals, particularly towards the end of the scale, indicate that the fitted smooth might not be
correct. In this case, this is due to the fact that only a few observations exist with such high numbers of
landings on runway 14.
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Figure 3. Smooth terms; the solid line is the fitted smooth and the dashed lines are the 95%
confidence intervals.

Figure 4 shows the predictions of the model for both GAs and landings. Unfortunately, the
predicted probability distributions do not differentiate the landings from the GAs well enough for
practical applications. This result was expected to some extent, as the input data used are highly
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aggregated and do not contain enough information. For example, the model does not know if the
weather reported in the METAR will change during the next hour. It would be possible to increase
the fidelity of the model by introducing additional predictors; for example, as suggested in [4], delays
and the amount of ground traffic, or the Terminal Aerodrome Forecast (TAF) section of the METAR,
which indicates the future trends of meteorological conditions. However, the authors do not expect a
significant improvement to the model. Instead, in the next section, a different approach is proposed.
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Figure 4. Predicted probabilities. Red: distribution of the predictions when no GAs occurred. Blue:
distribution when at leas one GA occurred. Dashed: median.

4. Microscopic Model: Prediction of the GA Probability for an Approaching Aircraft

The aim of the microscopic model is to estimate, for each approaching aircraft, the probability of a
GA before it is initiated. As such, this information is highly valuable to air traffic control, as potential
conflicts can be better anticipated and operation is more efficiently managed.

Following a method presented by Dai, the probability of a GA is estimated at a ‘cut-off point’ [17],
which, in this paper, is selected to be a point on the extended centerline of runway 14, located 10 km in
front of the threshold. By applying the defined cut-off point, 97% of all observed GAs (695 trajectories)
are selected for use in the microscopic model (see Figure 5). Subsequently, for each observed trajectory
labeled as an approach to runway 14, the 10 last observations (at a sample rate of 5 s, 10 observations
correspond to 50 s of trajectory data) in the approach corridor prior to the cut-off point are used in the
microscopic model.
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Figure 5. GA initiation distances from runway.

4.1. Feature Engineering

The microscopic model requires additional features, which have to be engineered from the data.
These features are (i) a number of stability metrics relating to the stability of an aircraft on the approach,
(ii) information on the lead–trail relationship of two aircraft that are approaching simultaneously, and
(iii) environmental and aircraft-related information.

4.1.1. Stability Metrics

To describe the stability of an approach, three different metrics (see Table 3) are used: (i) the flown
glideslope angle (the glideslope refers to the vertical guidance of the instrument landing system (ILS);
for instance, runway 14 at Zurich Airport is equipped with an ILS with a 3◦ glideslope angle), (ii) the
deviation from the localizer (the localizer refers to the lateral guidance of the ILS), and (iii) the specific
potential and kinetic energy of the aircraft. The flown glideslope and localizer deviation are depicted
in Figure 6.

Table 3. Summary of stability metrics.

Formula Feature

αgs = arctan har
dthr

Glideslope angle αgs, with aircraft at a height above runway har and at a
distance dthr from the threshold

δcl =
dist(airplane, centreline)Localizer deviation δcl : 2D distance between airplane and centerline

Es = h + V2

2g
Aircraft specific energy Es (also known as energy height), with aircraft at a
height h, ground speed V, and the gravity constant g [3]

Figure 6 shows the profiles and the mean value distributions of the used stability metrics αgs,
δcl , and Es for a subset of 1000 randomly chosen landings and the 695 identified GAs. Despite an
overlap of the distributions of GAs and nominal landings, some GA observations have the tendency to
have higher values. Consequently, this indicates that the proposed stability metrics might be useful
predictors for unstable approaches.
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Figure 6. Profile of stability metrics and mean distributions.

4.1.2. Lead–Trail Relationship

When two aircraft are simultaneously approaching the same runway, ATC must ensure spatial
separation between the airplanes at all times. Dai [17] suggests that the probability of a GA is
substantially increased if (i) there is a loss of separation, and (ii) the closing rate between the leading
and the trailing aircraft is “too high”. To model the lead–trail relationship, the time to leader tTL is
used in this paper, which is defined as: tTL = ∆TL

∆VTL
, where ∆TL is the relative distance and ∆VTL is

the relative speed between the leader and the trailer. Table 4 shows that minimum time to leader
observed during the approach has a positive impact on GA rates. Additionally, the authors expect the
wake category of the leading and trailing aircraft to have an impact on GA rates. Subsequently, both
minimum time to leader as well as wake categories are used as features in the microscopic model.

Table 4. Time to leader and observed GAs.

t [s] Number of GAs observed when min(tTL) < t P(GA | min(tTL) < t) per 1000 landings

200 260 3.12
180 229 3.47
160 178 3.96
140 126 5.20
120 78 8.99
100 43 23.4
80 16 82.9

4.1.3. Environmental and Aircraft-Related Information

The results of the macroscopic model suggest that weather-related features such as visibility,
wind, or the presence of thunderstorms in the vicinity of the airport affect the probability of a GA.
Additionally, aircraft-related information, such as the aircraft type, the GA category (the GA category
was derived from the data by estimating the probability of a GA for each aircraft type), and a binary
factor identifying whether the airline operating the flight is a home carrier (i.e., has Zurich as its home
base), are used in the microscopic model.
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4.2. Modeling

For the microscopic model, a number of different classical machine learning (ML) classifiers
were trained and the corresponding results were compared with each other. The heavily imbalanced
data (approximately 3 GAs per 1000 landings on runway 14) constitute a major challenge for the
application of classical ML classifiers. As such, Chawla [18] presents several sampling strategies and
ensemble-based methods to deal with imbalance. In this project, a downsampling of the majority class
(i.e., the landings) has been applied. The data used to train the ML classifiers consist of 1000 random
samples of the non− GA set and all 695 observed GA samples. This approach introduces a bias into
the predicted probabilities. However, since the microscopic model is used solely for classification
of trajectories into the sets yi ∈ {no go-around, go-around}, a correction of the bias (e.g., as presented
in [19]) is not applied. In order to decorrelate the extracted model features (see Table 5), a principal
component analysis (PCA) transformation was applied (see [20]) to the data used for the ML classifiers.
In this paper, the following ML classifiers provided in the Scikit-learn package [21] were used: Linear
Support Vector Machine, Round Based Function Support Vector Machine, Random Forest, AdaBoost,
Naive Bayes, Quadratic Discriminant Analysis, and Gradient Boosting Classifier. Indeed, the classifiers
were trained with 50% of the downsampled data, while the other 50% was used for testing and
validation purposes.

Table 5. Features used for training of the microscopic model.

Feature Name Description

mean_glideslope Standardized mean glideslope
mean_loc_deviation Standardized mean deviation from localizer
mean_specific_energy Standardized mean specific energy
min_time_to_leader Minimum observed time to leader, dummy value if no leader
leader_wtc_cat Wake turbulence category of leading aircraft
trailer_wtc_cat Wake turbulence category of trailing aircraft
thunderstorm Binary factor, true if a thunder storm was observed
ga_cat Typecode category for GA probability
is_homecarrier Binary factor, true if the flight is operated ba a home carrier
vis Standardized visibility in meter
crosswind Standardized crosswind component in knots
headwind Standardized headwind component in knots

4.3. Results

Figure 7 shows the receiver operating characteristic for each trained model applied on all of the
data for runway 14, covering 242,959 approaches. The true positive rate is indicated on the vertical axis,
while the false positive rate is displayed on the horizontal axis for different classification thresholds.
It can be seen that the Random Forest classifier is the best performing, since it manages to detect half
of the GAs with a false positive rate below 7%. While this result seems to be rather good, the number
of nominal landings being much higher than the number of GAs, only 2% of the predicted GAs are
actual GAs observed in the data.

Figure 8 depicts a comparison of the GA initiation distance with respect to the runway threshold
for GAs the model manages to predict (true positives, displayed as yellow-green) and (b) for the ones
that have not been predicted by the classifier (false negatives, displayed as red). It can be inferred that
the model does not perform well at predicting GAs that are initiated close to the runway threshold,
while it performs better at predicting GAs that are initiated further away than 3 km from the threshold.
False negatives can be explained by information not present in the model, such as ATC intervention or
runway occupancy. Additionally, Figure 9 shows the stability metric profiles and mean distributions
for false positives and true negatives, which can be explained by the following factors. First, there is a
high chance that the flight crew is capable of stabilizing an unstable approach identified at a cut-off
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point located 10 km from the runway threshold. Second, noisy or inaccurate data might contribute to
abnormally high approach metric values.

Figure 7. Receiver operating characteristic for GA prediction on all of the data.

Figure 8. Distance from runway at which GAs are initiated for confident false negatives and confident
true positives.
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Figure 9. Glideslope for the subset of “true negative” (blue) and “false positive” (red) predictions.

5. Conclusions

In this document, a microscopic and a macroscopic approach for determining the probability
of a GA are presented. The macroscopic model aimed at estimating the probability of a GA within
the next hour based on information that is available at the time of prediction, while the microscopic
model predicted the probability of a GA for each landing aircraft at a cut-off point on the extended
runway centerline, located 10 km in front of the threshold. Even though neither of the models
performed well enough for real-world applications, they both provide valuable insight into the system.
The macroscopic model can be used to understand the nonlinear relation between environmental and
operational features and GA occurrences, while the microscopic model could be used as a basis for the
development of a tool to assist ATC in identifying potential GAs. A possible extension of this work is
the modeling of the probability of a GA not for a single cut-off point, but rather for a large number of
points covering an entire section of the approach corridor. Even though the results presented in this
paper are somewhat non-conclusive, the proposed methods might inspire other researchers in the area
of GA prediction.
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