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Abstract: Increasing demands on a highly efficient air traffic management system go hand in
hand with increasing requirements for predicting the aircraft’s future position. In this context,
the airport collaborative decision-making framework provides a standardized approach to improve
airport performance by defining operationally important milestones along the aircraft trajectory.
In particular, the aircraft landing time is an important milestone, significantly impacting the
utilization of limited runway capacities. We compare different machine learning methods to predict
the landing time based on broadcast surveillance data of arrival flights at Zurich Airport. Thus,
we consider different time horizons (look ahead times) for arrival flights to predict additional
sub-milestones for n-hours-out timestamps. The features are extracted from both surveillance data
and weather information. Flights are clustered and analyzed using feedforward neural networks
and decision tree methods, such as random forests and gradient boosting machines, compared with
cross-validation error. The prediction of landing time from entry points with a radius of 45, 100,
150, 200, and 250 nautical miles can attain an MAE and RMSE within 5 min on the test set. As the
radius increases, the prediction error will also increase. Our predicted landing times will contribute
to appropriate airport performance management.

Keywords: landing time prediction; random forest; feedforward neural network; airport performance;
ADS-B; A-CDM

1. Introduction

The air traffic system is developing more and more in the direction of high-performing
and efficiency-driven business, which is additionally confronted with extremely high demands
on safety and with a growing awareness of the population of the environmental impact of
air traffic. These criteria inevitably lead to a multi-criteria optimization problem with conflicting
objective functions. In everyday operations, this optimization problem is additionally subject to
stochastic uncertainties [1,2]. This makes it difficult to predict the processes even for short prediction
periods. An appropriate prediction of the landing time, for example, will significantly improve the Air
Traffic Management (ATM), especially the airport efficiency on the day of operations.

Combining both feature engineering and modeling shows promising results to predict gate and
runway arrival times [3], using key features, such as aircraft position and weather variables. On
the one hand, the aircraft 4D position is broadcast by the aircraft ADS-B (Automatic Dependent
Surveillance-Broadcast) transmitter and provides an excellent input for trajectory prediction
(opensky-network.org). On the other hand, local airport weather information (provided by METAR
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messages [4]) and local operational constraints (e.g., airport capacity) enrich the position dataset with
the necessary information.

Decision tree methods, such as random forests [1,5,6], are fast to construct, resistant to
irrelevant predictors, capable of including both categorical and numerical predictors, and easy to
interpret [7]. Thus, the random forest is an ideal tool for trajectory data mining. Other data-driven
methods, such as the Hidden Markov Model (HMM) [8] or generalized linear models [9], can also
predict aircraft trajectories. A comparison of data mining methods, including linear regression,
decision tree, neural networks, and support vector regression, exhibits that the boosting method,
a decision tree, outperforms others when predicting the aircraft arrival time considering the described
data availability [2]. In our work, we will start by utilizing the feedforward neural network and
decision tree methods, such as random forests and gradient boosting machines, to predict the landing
time of aircraft in their position 45 nautical miles away from the airport. This approach will be extended
to different time horizons by using the intermediate prediction of support points at 250, 200, 150,
and 100 nautical miles around the airport. Features are extracted from both ADS-B data and weather
information as predictors. Those features, which are important contributors to landing time prediction,
are analyzed in Section 2.3.

2. Data Acquisition

2.1. ADS-B Data

The OpenSky Network provides the ADS-B data of aircraft at Zurich Airport ICAO: LSZH),
and we used a dataset from 5 to 31 October 2019, which we downloaded via the Python traffic
library [10]. The following data cleaning was accomplished before modeling.

e Anindex to indicate observations of the same trajectory is added according to the ICAO call sign
and timestamp.

o  Trajectories outside the circles of 45, 100, 150, 200, and 250 nautical miles around Zurich Airport
are excluded (entry points of these five circles are shown in the right subplot of Figure 1).

e  Aircraft passing by but not landing at Zurich Airport are excluded.

e  Trajectories with an entry point too close to the runway are excluded as well.
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Figure 1. (Left) Sixty sample trajectories approaching Zurich Airport between 5 October 2019 and
31 October 2019, used for landing time prediction in this study. (Right) Entry points of aircraft when 45,
100, 150, 200, and 250 nautical miles away from the runways. The red point in the middle denotes the
reference point 47.45 latitude and 8.56 longitude of Zurich Airport.
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2.2. Weather Data

The second most important input data are weather data obtained by numerically modeled
weather output, provided by the National Weather Service of the National Oceanic and Atmospheric
Administration (NOAA, www.ncdc.noaa.gov). Therein, the Global Forecast System (GFS) outputs
a global weather dataset and provides forecasts with different time horizons. The data include the
main atmospheric state parameters, such as temperature T (K), pressure p (Pa), density p (kgm~3),
horizontal wind speed to the west 1 and north v, as well as vertical wind speed w (ms~!). Every six
hours, the data are updated. GFS provides weather data for 64 vertical layers with a lateral resolution
of a minimum of 0.25 degrees. Here, a lateral resolution of 0.5 degrees is used, which corresponds to
~60 km at mid-latitudes.

2.3. Feature Extraction

Both features from ADS-B data and the weather variables are included as predictors. Table 1
provides information about all the predictors. ADS-B data directly provide the following trajectory
features: ground speed, track angle, vertical rate, and position variables, such as longitude, latitude,
and altitude when entering the circle. Subsequently, the remaining features are calculated from ADS-B
data, as described in Table 1.

Table 1. Summary of features, relevant for the aircraft landing time prediction. GFS, Global Forecast

System.
Category Feature Description
latitude and longitude position of aircraft when entering the circle
geopotential altitude position of aircraft when entering the circle
Trajectory ground speed ground speed of aircraft when entering the circle
track track of aircraft when entering the circle
vertical rate vertical rate of aircraft when entering the circle
cos.angle cosine of the angle between tracks entering the circle and landing
Cluster cluster K-means cluster of aircraft when entering the circle
density 15 min before number of aircraft departing or landing 15 min before entering
density 15 min after number of aircraft departing or landing 15 min after entering
density 15 min BA number of aircraft departing or landing 15 min Before/ After entering
density 30 min before number of aircraft departing or landing 30 min before entering
Traffic density ~ density 30 min after number of aircraft departing or landing 30 min after entering
density 30 min BA number of aircraft departing or landing 30 min before/after entering
density 60 min before number of aircraft departing or landing 60 min before entering
density 60 min after number of aircraft departing or landing 60 min after entering
density 60 min BA number of aircraft departing or landing 60 min before/after entering
Weather temperature, wind speed ~ GFS analysis data at (longitude = 8, latitude = 47, pressure = 1000 hPa)
and relative humidity and time closest to the time when aircraft entering the circle
Seasonality hour of a day 0-24 h of the day
parts of a week labeled as Monday to Sunday

Besides the track angle at the entry point, the track angle when landing on the runway can also
be considered. Figure 2 displays two identified patterns: Flights shown in the right subplot have
a longer flight time within the 45 NM cycle than the left subplot’s trajectories. The landing time
difference can result from more different track angles entering the 45 NM radius circle and landing.
The dark blue trajectory in the right subplot changes direction along with its flight, so more distance
is traveled, and the angle between the two tracks, the track when entering the circle and the track at
the runway, is more than 90 degrees. The difference in the track angle between entering the circle and
landing is smaller in the left subplot. The cosine of this track angle between entering and landing
tracks is used as a predictor. The track angle at the runway is unknown in practice when predicting
when an aircraft is approaching the airport. The angle of the planned runway can substitute this
information.


www.ncdc.noaa.gov
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Figure 2. The difference in the track angle between the entering point on the circle and the landing
point. (Left) Trajectories with less landing time; (right) trajectories with more landing time.

To use the direction at the entry point of the circle as a predictor, we clustered the observations
using a K-means clustering algorithm. Figure 3 presents an example of entry points at a circle with
a 45 NM radius. These entry points can be clustered with the K-means method into seven groups,
representing trajectories from seven directions [5]. In the right of Figure 3, the density plot of the
landing time of these groups reveals the differences of these trajectories from seven directions.
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Figure 3. K-means clustering and landing time by clustering. (Left) Clustered entry points with the
radius as 45 NM; (right) density plot of landing time grouped by K-means clusters.

Figure 4 exhibits the traffic density depending on the time with each density layer about the
traffic frequency of a day and the height of this plot denoting the number of aircraft entering the circle.
The traffic density shown in Figure 4 significantly depends on the time of the day. To extract features
regarding the traffic capacity, a time interval, 15 min after this aircraft entering the circle, is considered
before or after an aircraft enters the circle. This time interval is then extended to 30 and 60 min before
or after an aircraft entering the circle to consider traffic density in the short and long time period. A
more precise count of traffic density will not only consider aircraft entering as in Figure 4 but also
exclude aircraft landing or departing out of the circle within this time interval. In other words, the
number of aircraft in the air and within the circle are counted within a given time interval as features,
which is how the features of traffic density in Table 1 are extracted.

Weather variables like temperature, wind speed, and relative humidity also have an impact
on landing time. Data from GFS Analysis (www.ncdc.noaa.gov) also represent excellent predictors.
Since GFS provides weather updates every 6 h, we use the nearest weather observations temporally at
the location 8 degrees longitude and 47 degrees latitude at pressure level 1000 hPa.


www.ncdc.noaa.gov
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Figure 4. Traffic density of the day.

2.4. Descriptive Analysis

The histogram of numerical features extracted in Table 1 is shown in Figure 5. The landing time can
exceed 40 min, as can be seen in the right bottom subplot of Figure 5. Those extreme data are removed
in [5,11] to make observations more homogeneous, but not in our work. Features like longitude,
latitude, track, relative humidity, temperature, wind speed, and the cosine of the angle between
tracks entering and landing do not follow a normal distribution (see Figure 5). Among air traffic
density variables, such as time interval increases, the number of aircraft also shifts to the right.
In Figure 6, we present Spearman correlations of features and landing time for aircraft entering a circle
with a radius of 45 NM. A linear correlation has a parametric assumption of an elliptical distribution,
such as a normal distribution [12], which is not the case for most variables in Figure 5. Therefore, the
rank correlation measure, Spearman’s Rho, is calculated in Figure 6 instead. Spearman’s Rho (1) is the
linear correlation coefficients of the empirical margins, where empirical margin Fy(xj1) = %ﬂRil and
Rjp is the rank of x;; among x11, ..., Xp1.

ps(x1,x2) = Cor {Fy1(x1), Fi2(x2)} 1)

Hour, weekday, and clustering are categorical features and, therefore, not involved in the
correlation matrix in Figure 6. Landing time, in the last column, represents a correlation between most
predictors and landing time. Those variables describing traffic densities present a high correlation
among themselves.

longitude latitude track vertical_rate groundspeed
[N u, o J _LJL J;_, i | ,,j.l __‘-._,
T T " T T T T T T S T T S B S
8 9 47.0 475 48.0 0 100 200 300 —-4000 -2000 0 2000 100 200 300 400 500
geoaltitude RH TMP spd density15b0a
> M bk ] |
o] eak el el | | Lll-l-— RN I | .h.,
c SRR - e v B S B e T e e I
) 10000 20000 30000 40000 40 60 80 100 285 290 295 300 0O 2 4 6 0 5 10 15 20
>
o densityOb15a density15b15a density30b0a densityOb30a density30b30a
=
=
T | T e S | I iy bl
= T T R T T A e S T T T T T
0 5 10 15 20 0 10 20 30 0 10 20 30 40 0 10 20 30 40 0 20 40 60
density60bOa densityOb60a density60b60a cos.angle landing.time
T T T T T T T T T T T T T 0 T T T T T T
0 20 40 60 0 20 40 60 30 60 90 120 -1.0 -05 00 05 10 O 20 40 60
Variables

Figure 5. Histogram of predictors and landing time.
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Figure 6. Spearman correlation between features and landing time.

3. Landing Time Prediction

3.1. Methods and Comparison

After features being extracted, three machine learning methods, the penalized feedforward
Neural Network (NN) and the decision tree method, including Gradient Boosting Machines (GBM)
and Random Forests (RF), are utilized to predict landing time. A random forest grows a collection of
trees by subsetting both observations and variables. Package ranger [13] is applied to fit a random
forest method. Gradient boosting machines use a collection of weak learners, modeled by decision
trees, to construct a strong prediction model. GBM uses an iterative method to update the model. For
each step, the tangent of the cost function is fit by a decision tree and updates the model towards
optimal. Package xgboost [14] is applied to fit such a model. A feedforward neural network lets
information in the feature space flow through functions, or layers, to map to the target value [15]. We
add a penalized parameter to avoid overfitting since the neural network is too flexible and prone to
overfitting. We use TensorFlow [16] to construct a feedforward neural network with four hidden layers
and L% norm regularization. To fit hyperparameters like the number of variables in a random forest
model and penalty parameters in NN and GBM, we randomly split all observations as the training,
validation, and test sets. The test set consists of 20% of all the observations, while the training and
validation sets amount to the remaining 80%. The ratios of the training and validation sets are different
for the three methods, 4:1 for RF and NN and as a hyperparameter for GBM. Hyperparameters are
searched on a grid by the validation set, and the methods are evaluated on the test set. The methods
are evaluated using the Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE):

RMSE =

|-

1

1 n
MAE = o Yo lyi— il 3)
i=1

(vi —9i)? 2)
=1
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where 7 is the sample size, y; is the landing time interval, and 7; is the estimated value in (2) and (3),
respectively. Tree methods are better than neural networks. A random forest and a gradient boosting
machine have both an MAE and RMSE smaller than 5 min for all radii (see Table 2).

Table 2. Accuracy evaluation results (RMSE and MAE) of three machine learning methods in order to
predict the aircraft landing time. GBM, Gradient Boosting Machine.

Radius (NM) Methods RMSE (min) MAE (min)

45 RF 3.21 2.39
45 GBM 3.16 242
45 NN 4.18 3.22
100 RF 3.59 2.70
100 GBM 3.44 2.60
100 NN 5.01 3.72
150 RF 4.16 292
150 GBM 4.04 2.88
150 NN 5.65 4.00
200 RF 4.53 3.22
200 GBM 4.27 3.12
200 NN 7.02 4.99
250 RF 4.78 3.32
250 GBM 4.75 3.41
250 NN 10.64 8.61

3.2. Error with Radius

Figure 7 shows line plots of the MAE and RMSE on the test set, depending on the radius. As
the radius expands, both the RMSE and MAE grow with the three methods, which was our intuition.
While the errors by the tree methods grow slowly, that of NN grows more rapidly. Figure 8 presents a
density plot of the error on the test evaluated by the RF method as the radius expands; the density plot
expands and becomes flatter, with the error exceeding 30 minutes.

11
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E 6 é RF
~ w 7
w
< %)
2 E
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4 5
3
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Radius (NM) Radius (NM)

Figure 7. Line plot of MAE and RMSE depending on the radius by GBM, NN, and RF.
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Figure 8. Density plot of errors on the test set depending on the radius by the RF, GBM, and NN
methods.

3.3. Feature Importance

Feature importance identifies those variables that contribute more to the landing time prediction
accuracy than others. The importance of features in Figure 9 is measured with random forest, an
ensemble of trees with randomness in two ways [17]: (a) each tree is based on a random sample of
original data, and (b) each tree considers only a subset of all features. The importance of a feature is
measured as the average improvement of accuracy using the Out Of Bag (OOB) error (specifically Mean
Squared Error (MSE)) [17] with this feature included. For a tree ¢, the OOB MSE is calculated by:

1 n

OOBMSE; — (yi — 0ir)?,

Moobt j=1:icO0B
where 1,y ; is the number of observations in tree ¢. Since a random forest permutes features for trees,
we have also OOB MSE with feature x; included and excluded,

1 n

OOBMSE; (+x;) = {vi— Gi(+x;) }2 ,

Moob,t {—1:icO0B;

1 n
OOBMSE; (—x;) = (i — 0 (—x)) )2

Moob,t i=1:icO0B;

If x; is not an important predictor, the difference OOBMSE; (+x;) — OOBMSE; (—x;) should not be
comparatively large. The averaged MSE improvement of all trees is used to measure importance. The
ranking of feature importance can be derived based on the improved MSE. As the radius increases from
45 NM to 250 NM, the landing time also increases; thus, the scale of MSE also increases. Because of this,
the improved MSE can be compared with the same radius, but not for a different radius, in Figure 9.
Feature importance results can be sensitive to the number of variables selected in each tree [17,18].
This parameter is set in Section 3.1 to minimize the cost function on the validation set. Random seeds
are set as 20 different values for a variation in the boxplot in Figure 9. It shows a variation in importance
ranking with different radius, but in general, the cosine of the angle between tracks entering and
landing, ground speed, the track angle, longitude, and traffic density are relatively important. Weather
variables, such as temperature and relative humidity, are not measured as important since that weather
information near the closest observation of GFS analysis data is used.
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Figure 9. Unconditional Feature importance evaluated by random forest permutation.

Strobl et al. [18] recommends using conditional importance, which excludes other variables’
contributions when considering importance for prediction accuracy. However, we are still using
unconditional importance for the following reasons: The target for importance analysis is to identify
explanatory variables highly related to the landing time, where the unconditional importance would
better apply [17]. Moreover, a limited number of variables are included in our model. There is
no guarantee to exclude effects from all related variables, even considering conditional importance,

making conditional importance results suspicious.

4. Summary

We use data at Zurich airport in October from the OpenSky Network and apply machine learning
methods with 22 features extracted from ADS-B data. Decision tree methods, including random forests
and gradient boosting machines, can achieve a smaller error than neural networks. The prediction of
landing time from entry points at 45, 100, 150, 200, and 250 nautical miles can attain an MAE and RMSE
within 5 min on the test set. This result is less striking than in Dhief et al. [5] and Wang et al. [11],
who had the MAE and RMSE within one minute. This can result from the fact that no outliers are
removed in our work, and only a 25 NM radius was considered in Wang et al. [11].

Some other features can improve the prediction results of the landing time, such as which runway
to land, type of aircraft, and region of origin airport. These features can be added to enhance our
prediction model. Landing time has a long tail, which makes our estimation error large. The plotting
of these trajectory shows a holding pattern. It is worth investigating what triggers such a pattern.

Funding: This paper is part of the project UBIQUITOUS (Using ADS-B big data pattern analysis to improve the
quality of multivariate 4D trajectory optimization strategies) and financed by the German Research Foundation

(DFG) FR 2440/9-1.
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