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Abstract: Thin organic films are widely used in sensors, solar cells, and optical devices due to their 
intense absorption in the visible/near-infrared (IR) region. Shifting, quenching, or reshaping of some 
spectral features can be achieved by chemical functionalization of the molecules, whereas an 
anisotropic fingerprint due to preferential molecular alignment can be induced via a proper design 
and/or preparation of the substrate. Recently, we investigated the optical response of thin films of 
porphycene to acidification. With respect to the well-known and closely related tetraphenyl 
porphyrin, porphycene has the clear advantage of being optically active in the full visible range, 
and this makes visible by naked eye the immediate change of the film from brilliant blue-turquoise 
to green when exposed to HCl vapors. In this work, by exploiting a homemade reflectance 
anisotropy spectroscopy (RAS) apparatus, we explore possible optical anisotropies in the visible 
spectral range of porphycene films and relate them to the film morphology analyzed by atomic force 
microscopy (AFM). 
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1. Introduction 

Organic molecules are employed in many devices such as sensors [1,2], photovoltaic systems [3–
5], and electronic circuits [6–8]. The advantage of their use over other systems is related to the 
presence of many synthetic tools that allows for the tuning of their physical and chemical properties 
[9]. In this respect, the absorbance spectral range can be widely tuned to match, e.g., the solar 
spectrum, or the gap between the highest occupied molecular orbital and the lowest unoccupied one 
(HOMO-LUMO) can be expanded or shrunk for optimizing the band alignment and the electron 
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transfer at the heterorganic interfaces [10–12]. Heterocyclic organic molecules offer the possibility of 
exploiting intramolecular mechanisms, potentially leading to compounds suitable for single-
molecule devices, as recently proposed for switches [13]. In this case, the possible interconversion of 
tautomers (i.e., constitutional isomers) in a free-base tetraphenyl porphyrin (H2TPP) molecule is 
suggested as a working principle of an electronic device. We proposed a simple preparation to align 
and stabilize an array of H2TPP tautomers along a preferential direction, when deposited on highly 
oriented pyrolytic graphite (HOPG) [14]. This result represents an obligatory step for the construction 
of scalable devices. Ordered arrays of tautomers can be monitored by traditional optical 
spectroscopies, such as reflectance anisotropy spectroscopy (RAS), opening the route toward possible 
optical device prototypes.  

However, the main H2TPP absorption peak is centered at around 420 nm, and changes in the 
optical properties can only be detected by probing at this wavelength. Recently, we started a 
comparative investigation of the assembling and optical properties of H2TPP and porphycene (H2Po) 
when grown on HOPG [15]. H2Po, whose structure is reported in Figure 1, shows intense adsorption 
features at both the main Soret region (358 nm) and the Q-band region (between 558 nm and 630 nm), 
which lend a brilliant blue color to the deposited films. In addition, the exposure of H2Po to acid 
vapors suddenly converts the film color from blue to green (H2Po protonation), according to the over 
60 nm red shift of the Soret bands and the reduced absorption of the Q transitions. The optical activity 
in the red part of the visible range makes H2Po extremely interesting for sensor and device 
application.  

 
Figure 1. Comparison of meso-tetraphenylporphyrin (H2TPP) and porphycene (H2Po) molecular 
structures; the protonation of porphycene (H3Po+, H4Po2+) is exemplified. 

From a morphological point of view, thin H2Po films show crystals placed on a two-dimensional 
(2D) wetting layer [15] undergoing clear damage when the film is exposed to acid vapors (namely, 
hydrochloric acid, HCl), in close agreement with that observed in H2TPP samples [12].  

In this work, we complete the comparison between H2TPP and H2Po films on HOPG by studying 
the optical anisotropy of the porphycene films in the visible spectral range (L-bands). In fact, when 
applied to porphyrin samples, RAS was able to disclose important information on the assembling 
properties of the molecules and to bridge the data acquired on the mesoscopic and microscopic length 
scale [16]. Here, we prove that the H2Po and H2TPP wetting layers on HOPG show an optical 
anisotropy that is maximized (in modulus) along the same direction. 

2. Materials and Methods 

H2Po was obtained from 2,7,12,17-tetra-tert-butylporphycene using a previously reported 
procedure [17]. Porphycene films were grown by physical vapor deposition (PVD) at a base pressure 
of 5 × 10−6 mbar. The growth chamber (Kenositec KE500) was provided with four Knudsen cells (K-
cell). The sample holder was positioned at about 30 cm away from the K-cells. The latter were 
thermally controlled via a thermocouple. H2Po was sublimated under high-vacuum conditions at 
around 220 °C. Highly oriented pyrolytic graphite (α-grade HOPG, Optigraph 1 cm × 1 cm) was 
exfoliated with an adhesive tape before any molecule deposition. HOPG substrates were kept at room 
temperature during the molecule deposition. A quartz microbalance was placed close to the sample 
to monitor the molecular deposition rate (0.3–0.4 Å/s), allowing the nominal film thickness 
evaluation, which is defined as the final thickness displayed by the quartz crystal microbalance. The 
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latter was previously calibrated by comparing the nominal thickness of thicker samples by means of 
a capacitive profilometer. 

The organic films were also exposed to vapors of hydrochloric acid. The latter were produced 
by dropping sodium chloride inside concentrated sulfuric acid (>98%, provided by Merck). In this 
way, a huge amount of vapors can reach the sample, and the protonation is ensured on the whole 
sample surface. 

A homemade RAS setup was used for the experiments. Details of our system were reported in 
the literature [18]. Our optical setup works in the visible spectral range. RAS spectra were here 
collected between 500 nm and 630 nm where the Q-bands are located. The light spot on the sample 
was about 1 mm2. 

The RAS signal is defined as ∆ܴܴ = 2ܴఈ െ ܴఉܴఈ ൅ ܴఉ (1)

where Rα(β) is the reflectivity of light polarized along the α(β) direction. When used to study single 
crystals, α(β) is aligned along a high-symmetry direction. Conversely, when organic films are 
investigated by RAS, the maximum anisotropy is not known a priori, and an azimuthal analysis must 
be performed. In this case, the sample is rotated around the substrate surface normal axis, and spectra 
are acquired and plotted in a polar plot (see below). 

A commercial atomic force microscope (AFM, Keysight 5500) was employed for the microscopic 
morphological characterization. Images were collected in tapping mode to prevent the organic film 
from possible damages. We used silicon tips (NanoSensors) with an apex curvature of about 20 nm 
and a resonance frequency of 310 kHz. 

3. Results and Discussion 

3.1. Optical Characterization and the Effect of the Exposure to Acid Vapors 

A sample of H2Po with a nominal thickness of 10 nm, directly comparable with the one used in 
a previous work [15], was analyzed by RAS in view of finding the maximum anisotropic signal. The 
sample was rotated around the substrate surface normal axis with 30° steps, and a spectrum was 
collected at each step (see Figure 2). The RAS intensity of a peak at around 600 nm is reported as a 
function of the azimuthal angle θ. The latter represents the angle between a RAS polarization 
direction (α) and the exfoliation direction used for the HOPG preparation.  

. 

Figure 2. Reflectance anisotropy spectroscopy (RAS) azimuthal analysis used to find the preferential 
anisotropy direction. The reported angle represents the misalignment between the RAS α direction 
and the exfoliation direction used in the substrate preparation. The open dots are experimental data, 
while the filled ones are symmetrically equivalent data reported only for a better comparison with 
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the theoretical behavior (dashed line, see the text for details). The RAS signal is computed after the 
background subtraction. The X point indicates the angle for which the RAS signal is maximized. the 
measures in Figure 3 are taken with this substrate orientation. 

Using linearly polarized light, an overall azimuthal rotation of 180° is enough to find the 
maximum anisotropy direction at θ = 80°. These data are reported by open dots. The filled circles are 
placed at symmetrically equivalent azimuthal angles (θ’ = θ + 180°) only to help the reading of the 
expected theoretical behavior (dashed line). The latter follows the equation below [19]. ∆ோோ (ߠ) = ∆∆ோ௠௔௫ (cos ଶ. (2)(ߠ2

We find the maximum intensity when the RAS α-polarization direction is aligned almost 
perpendicularly with respect to the HOPG exfoliation line. In H2TPP films, the maximization is 
achieved when the RAS α-polarization direction is parallel to the HOPG exfoliation line [20]. A 
theoretical investigation of the optical properties of porphyrins showed that RAS anisotropy is 
strictly related to the alignment of tautomers [16]. If we assume for H2Po the same interpretative 
picture (the optical transition along the NH–HN direction (see Figure 1) is placed at a larger 
wavelength), we can, thus, speculate that the tautomer preferential alignment is influenced by the 
graphite exfoliation. 

Figure 3 reports the maximized RAS spectra of the Q-bands for the 10 nm and 1 nm thick H2Po 
films on HOPG. Despite being 10 times thicker, the signal intensity of the former does not exceed that 
of the thinner sample. This suggests that the anisotropic character is immediately provided by the 
H2Po wetting layer. The presence of crystals on thicker samples mainly influences the Soret band 
located in the ultraviolet (UV) spectral range. This fact can be deduced from the significant 
enhancement of the RAS signal below 500 nm (shaded area in the Figure 3). 

After the exposure to HCl vapors, the 10 nm thick sample is significantly altered in its optical 
anisotropic properties (blue dots). We previously reported the protonation effect on the absorption 
and reflection properties of the H2Po film [15]. In that investigation, we observed a recovery, at least 
partial, of the studied optical properties. In this case, the anisotropic RAS signal of the Q-bands is 
irreversibly quenched. It is known that H2Po protonation is not stable in time but, in a few seconds, 
the HCl excess is removed from the sample. Consequently, we speculate that the original molecular 
assembly is definitively lost, probably due to the intense exposure to acid vapors. This question can 
find an answer only by future scanning tunneling investigations. 

 
Figure 3. RAS analysis of the Q-band peak acquired on the 10 nm (black) and 1 nm (red) thick H2Po 
films on highly oriented pyrolytic graphite (HOPG). The optical anisotropy signal of the 10 nm thick 
sample after the exposure to acid vapors (blue) is also reported. 
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3.2. Morphological Characterization and the Effect of the Exposure to Acid Vapors 

A freshly exfoliated graphite substrate generally shows a well-recognizable morphology where 
flat terraces are separated by mono- or multiatomic steps. An AFM characteristic image is reported 
in Figure 4. 

 
Figure 4. A (4 × 4) μm2 atomic force microscopy (AFM) image of a freshly exfoliated graphite substrate. 
Clear steps and terraces are visible in the image. 

The roughness value (here defined as the arithmetical mean deviation from the assessed profile, 
Ra) is about 0.1 Å, thus allowing to discern even a monoatomic step. 

The morphology is similar when the 1 nm thick H2Po sample is analyzed (Figure 5a). No three-
dimensional (3D) structures or crystals are visible, and graphite steps are still recognizable. 
Nonetheless, the Ra increases to about 0.3–0.5 Å, suggesting that something covers the graphite 
substrate. We observe that the phase contrast image (panel b) appears homogeneous. We conclude 
that the H2Po wetting layer is uniformly disposed on the HOPG substrate. 

 
Figure 5. A (6 × 6) μm2 AFM image acquired on the H2Po 1 nm thick sample: (a) topography; (b) phase-
contrast image. The HOPG substrate is exfoliated along the vertical direction. 

The 10 nm thick sample is instead characterized by crystals that evolve from the molecular 
wetting layer (Figure 6a). 
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Figure 6. A (8 × 8) μm2 AFM image acquired on the H2Po 10 nm thick sample: (a) topography; (b) 
phase-contrast image. The HOPG substrate is exfoliated along the vertical direction. 

They have different sizes and sharp edges. In panel b, we report the phase-contrast image where 
3D structures are observed to give rise to bright regions distributed on a uniform darker background 
corresponding to the 2D wetting layer. This contrast suggests that crystals and the wetting layer have 
a substantially different molecular arrangement. This morphology is significantly altered after the 
exposure to HCl vapors. In this case, only few crystals (3D structures having sharp edges) are 
observed, while the topography is characterized by globular clusters (Figure 7a) in agreement with 
previous AFM investigations [14,16]. Conversely, with respect to the literature, the phase contrast 
image (see Figure 7b) does not really help here in recognizing different regions of covered or 
uncovered graphite areas. The topography results are, however, in agreement with the RAS analysis, 
suggesting a significant alteration of the assembling properties of the H2Po molecules. 

 
Figure 7. A (6 × 6) μm2 AFM image acquired on the H2Po 10 nm thick sample after the exposure to 
hydrochloric vapors: (a) topography; (b) phase-contrast image. The HOPG substrate is exfoliated 
along the vertical direction. 

4. Conclusions 

Porphycene films were recently investigated due to their interesting optical properties in the 
visible spectral range when exposed to acid vapors. Starting from an intense blue color, the film 
suddenly becomes green during the molecular protonation. The recovery takes only a few seconds 
in standard conditions. In this work, we extend our comparison between porphyrin and porphycene 
films. By exploiting RAS spectroscopy, the authors have already proven that H2TPP anisotropic 
optical properties can bridge microscopic information (namely, tautomer alignment) to others on the 
mesoscopic scale. Consequently, a homemade RAS apparatus was employed to study H2Po films. 
Interestingly, we observe a small signal in the Q-band region of the molecules. Anisotropy is detected 
both on the wetting layer and on a thicker (10 times) film. The maximum anisotropy is found when 
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the graphite exfoliation direction is almost aligned along the beta polarization axis. This means that 
molecules can be preferentially oriented along a direction that is known a priori. Despite this fact, 
other properties differentiate porphyrin and porphycene molecules. In particular, the Q-bands seem 
to be quenched after the exposure to acid vapors, suggesting some rearrangements of the assembled 
film. 
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