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Abstract: The aim of the study was to compare the power output during indoor sprints on a 
SKILLRUNTM treadmill with the power output expressed in outdoor sprints pushing an 
instrumented sled. The SKILLRUNTM has been chosen because it is able to simulate the outdoor 
sprint pushing a sled setting different loads and providing performance output data like speed and 
power. Two athletes were involved in this pilot study and were asked to perform indoor and 
outdoor sprints with the same overloads. Two dynamometric handles were designed and applied 
both on the treadmill for the indoor sprints and on the sled for the outdoor sprints. Power data were 
calculated throughout the force measured at the handles and the speed collected during the sprints. 
Kinematics data of trunk and lower limbs were also calculated by means of a set of inertial sensors 
(Xsens, Enschede, The Netherlands). The power–speed and the load–speed curves together with the 
kinematics results derived from the indoor and outdoor tests were compared, showing, in general, 
a good agreement between the indoor and outdoor conditions. These results highlighted the validity 
of the SKILLRUNTM treadmill in simulating a sprint with overloads. 
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1. Introduction 

Power production capability is a critical factor in sports performance, especially in sports which 
involve fast accelerations like sprinting. It is also correlated with the efficiency of sports activities 
[1,2]. 

SKILLRUNTM by Technogym is a motorized treadmill and can be used to simulate a sled push 
exercise, used by athletes and trainers to enhance neuromuscular performance [3] and muscular 
power. Research also showed that these exercises could engage a Post Activation Potentiation (PAP) 
effect with beneficial effects on performance [4]. 

Force and power during running were measured by several authors, [5,6] typically with a load 
cell attached with a cable to the athlete’s upper body [6] or on a nonmotorized force treadmill [5]. 
Only one study measured these parameters indoor with a treadmill instrumented with force plates 
and dynamometric handlebars [7]. 
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Therefore, the main goal of this work was to investigate whether the sled push exercise 
simulated on the treadmill (indoor) was similar to the real one (outdoor) in terms of kinematics and 
power output. 

2. Materials and Methods 

2.1. Participants 

Two athletes were enrolled for this pilot study (Table 1). 

Table 1. Height, bodyweight, athletic level and age of the two participants. 

 Athletic Level Height (m) BW (kg) Age 
ATHLETE 1 Soccer player 1.74 72 23 
ATHLETE 2 Soccer player 1.79 74 23 

2.2. Instruments and Procedures 

The kinematic variables were measured thanks to an Xsens suit (Enschede, The Netherlands) 
while to investigate the forces during sprinting a set of two dynamometric handles was specifically 
designed (see Figure 1a,b). 

  

(a) (b) 

Figure 1. (a) Three-dimensional (3D)-printed handle and force channels; (b) Force components 
channels scheme. 

The dynamometric handles measured the Normal (N) and Parallel (P) force components (Figure 
2a) in their reference system, which have been then converted into total horizontal and vertical forces. 

  
(a) (b) 

Figure 2. (a) Unit vectors of measured and computed force components; (b) Sled for outdoor testing. 
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2.3. Tests Protocol 

For the indoor tests, a SKILLRUNTM treadmill was equipped with the 2 instrumented handles 
(Figure 2a). For the outdoor tests a specifically designed sled (Figure 2b) was equipped with: 

• Two instrumented handles (same as indoor tests); 
• One uniaxial accelerometer; 
• One encoder to measure the sled’s speed; 
• Somat eDAQ for data acquisition. 

Several sprints with increasing sled loads were performed by each athlete and the temporal 
variation of the force applied to the handles was collected at 5 kHz with Somat eDAQ datalogger at 
each load step both indoor and outdoor. 

More in detail, different loads were employed in the sprints as reported in Table 2. For each load 
condition, the two athletes performed 2 sprints of 25-m length. Rest after each sprint was set to 3 min. 
The fastest sprint for each load condition was used for the data analysis. 

Table 2. Sled loads used in the sprints. 

 Indoor Sled Loads (kg) Outdoor Sled Loads (kg) 
ATHLETE 1 15-30-45-60-75-90-100 30-45-60-75-90-100 
ATHLETE 2 15-30-45-60-75 30-45-60-75 

Loads were the same during the indoor and outdoor tests. However, since the weight of the 
outdoor sled was 30 kg, the outdoor sprints missed the 15-kg load step (Table 2). 

2.4. Measured Variables 

To compare the outdoor and indoor condition, the following variables were investigated: 

• Trunk lean angle; 
• Left and right hip angle (sagittal plane, flexion/extension); 
• Left and right knee angle (sagittal plane, flexion/extension); 
• Left and right ankle angle (sagittal plane, plantar/dorsiflexion); 
• Total horizontal force produced (FH, in orange, Figure 2a); 
• Total vertical force produced (FV, in blue, Figure 2a); 
• Power output calculated with handles’ measured forces. 

2.5. Data Analysis 

Post-processing analysis was carried out with a customized MATLAB script (MathWorks, 
Natick, MA, USA, r2019a). The power exerted during the tests was obtained multiplying the 
horizontal force (sum of horizontal force on both handles, left and right) elicited during the test by 
the average speed, when a steady state was reached (i.e., excluding the acceleration phase). The 
following Equation (1) was used for the indoor tests:    𝑃𝑜𝑤𝑒𝑟 = 𝐹𝐻 𝑥 𝐵𝑒𝑙𝑡_𝑆𝑝𝑒𝑒𝑑  (1) 

The power in the outdoor tests was calculated as for the indoor tests with Equation (2): 𝑃𝑜𝑤𝑒𝑟 = 𝐹𝐻 𝑥 𝑆𝑙𝑒𝑑_𝑆𝑝𝑒𝑒𝑑  (2) 

For each load condition, the mean power value was computed as the average of the value 
obtained during the time integration period of 3 consecutive gait cycles at the steady-state condition 
subsequent to the acceleration phase. The SKILLRUNTM belt speed was obtained from its own 
datalogger and the sled’s speed during the outdoor tests from the encoder. The power values 
obtained for each load condition were then interpolated throughout a quadratic fit which allows 
estimating the power–velocity (P–V) relationship. A linear fit was employed to estimate the load–
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velocity (Load–V) relationship. This method of plotting P–V and Load–V relationships is called the 
multiple trial method [8]. 

Kinematics data were referred to as hip, knee and ankle angles in the sagittal plane. Raw data 
from the pelvis sensor (quaternion components) were post-processed to get the trunk inclination 
angle while the other flex/extension angles were given automatically by the full-body Xsens system. 

Finally, two non-dimensional parameters were defined (Equations (3) and (4)): 𝑅 = 𝑆𝑝𝑒𝑒𝑑_𝑂𝑢𝑡𝑑𝑜𝑜𝑟𝑆𝑝𝑒𝑒𝑑_𝐼𝑛𝑑𝑜𝑜𝑟   (3) 

𝑅 =  𝑃_𝐻𝑎𝑛𝑑𝑙𝑒𝑠_𝑂𝑢𝑡𝑑𝑜𝑜𝑟𝑃_𝐻𝑎𝑛𝑑𝑙𝑒𝑠_𝐼𝑛𝑑𝑜𝑜𝑟   (4) 

3. Results 

The figure below shows the plot obtained for athlete 1 (Figure 3). RMSE between each estimated 
curve was calculated for the P–V relationships of all testers (Table 3), as well as optimum velocities 
for power production 𝑣 . 

 
Figure 3. P–V and Load–V relationships for Athlete 1. 

Table 3. RMSE between curves and optimum velocities for power production. 

Athlete 
𝑹𝑴𝑺𝑬𝑰𝑵 𝑶𝑼𝑻  

(W) 𝒗𝑷,𝑰𝑵[𝐤𝐦𝐡 ] 𝒗𝑷,𝑶𝑼𝑻 [𝐤𝐦𝐡 ] 𝑳𝒐𝒑𝒕,𝒐𝒖𝒕[𝐤𝐠] 𝑳𝒐𝒑𝒕,𝒊𝒏[𝐤𝐠] 
1 31 12.7 14 61 50 
2 99 12.7 13 68 48 

Results for the kinematic comparison are reported in Table 4. Figure 4 shows the non-
dimensional parameters’ trends defined in Equations (3) and (4). 
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Table 4. Mean kinematic data. 

Total Load (kg)  𝐇𝐢𝐩 𝐀𝐧𝐠𝐥𝐞 𝐊𝐧𝐞𝐞 𝐀𝐧𝐠𝐥𝐞 𝐀𝐧𝐤𝐥𝐞 𝐀𝐧𝐠𝐥𝐞 𝐓𝐫𝐮𝐧𝐤 𝐀𝐧𝐠𝐥𝐞 

30 Outdoor 70°/−1° 121°/14° 35°/−37° 51°/30° 
Indoor 70°/−3° 115°/5° 33°/−45° 47°/36° 

45 
Outdoor 81°/−6° 128°/13° 34°/−35° 52°/30° 
Indoor 68°/0° 115°/9° 26°/−42° 46°/34° 

60 
Outdoor 67°/−1° 112°/15° 32°/−35° 51°/28° 
Indoor 70°/3° 107°/11° 36°/−40° 45°/33° 

75 
Outdoor 72°/−3° 105°/12° 35°/−35° 44°/28° 
Indoor 70°/1° 106°/9° 33°/−37° 41°/32° 

 
Figure 4. Non-dimensional parameters. 

4. Discussion 

Power–velocity profiling is useful because it allows the athlete to train at the optimal load [9] to 
maximize power output (i.e., 𝒗𝑷,𝒊𝒏 in Figure 3). 

The method developed allowed plotting P–V and Load–V relationships (both indoor and 
outdoor) with a good accuracy in terms of data fitting (Figure 3). Moreover, it can theoretically 
estimate the maximum velocity at 0-kg load (i.e., v_(max.out) in Figure 3), and the maximum load at 
zero velocity (i.e., L_(max.out) in Figure 3) [8]. 

However, looking at the P–V and Load–V plots, the theoretical maximum speed predicted by 
the P–V relationship is greater than that predicted by the load–velocity relationship. 

This could be due to: 

• Experimental points are hard to obtain after the P–V curve maximum because a very lightweight 
sled (≈0 kg would be needed to reach maximum theoretical speed); 

• Possible influence on the power output of the running aerial phase, which increases as the speed 
increases. 

As far as the non-dimensional parameters defined in Equations (3) and (4) are concerned: 

• RV seems to exponentially increase. We can speculate that higher sled loads can be pushed at 
higher running velocities in outdoor sprints; 

• RP seems to be around one for lighter sled load and suddenly increased at higher loads. We can 
hypothesize that the indoor sprints on the SKILLRUNTM did not allow pushing very heavy loads 
due to ergonomic issues. 

Future research could also exclude the aerial phases in power computation, which tend to be 
predominant as the running speed increases, possibly using IMU’s data to calculate foot contact times 
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[10]. A single-trial method to calculate power [8] could also be applied using the instantaneous 
velocity of the sled and force output on the handles during a single test. 

A difference in results could also be caused by a different coefficient of friction between the real 
and simulated sled. 

5. Conclusions 

A method to compare indoor (simulated) and outdoor sled pushing exercise was developed. 
Although some differences were noticed, for the two athletes we tested, the exercise performed on 
the SKILLRUNTM was comparable to that performed outdoor in terms of kinematics (ROM) and 
power output. The increase in the sample size will be the next step to confirm these preliminary 
results. 
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