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Abstract: The use of wearable technologies for the monitoring of human movement has increased 
considerably in the past few years, with applications to sports and other physical activities. Energy 
expenditure, walking and running distance, step count, and heart rate are some of the metrics 
provided by such devices via smart phone applications. Most of the research studies have involved 
validating the accuracy and reliability of the activity monitors by using the post-processed data from 
the device. The aim of this preliminary study was to determine if we can trust sensor data obtained 
from an Apple watch. This study evaluated the pre-processed data from the watch through step 
counting and heart rate measurements, and compared it with known validated devices (in-house 
9DOF inertial sensor and Polar H10TM). Repeated activities (walking, jogging, and stair climbing) of 
varying duration and intensity were conducted by participants of varying age and body mass index 
(BMI). Pearson correlation (r > 0.95) and Bland–Altman statistical analyses were applied to the data 
to determine the level of agreement between the validated devices and the watch. The sensors from 
the Apple watch counted steps and measured heart rate with a minimum error and performed as 
expected. 
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1. Introduction 

The use of wearable fitness devices for sports, healthcare and wellbeing applications has grown 
considerably over the past decade. The increase in the demand of these devices from the standard 
consumer has led to a highly competitive market. Energy expenditure, walking and running distance, 
step count, sleep/wake times, stand hours, flights climbed, and heart rate are some of the metrics 
provided by such devices via smart phone applications, which help promote physical activity within 
the general public. The benefits of participating in physical activities (PA) are well documented [1], 
although increasing the level of PA within the general population has proven to be difficult [2]. 

In addition to everyday use within the general population, the use of wearables is also 
transitioning into elite sport training. Researchers use inertial measurement units (IMU’s) for the 
measurement of athlete’s performance, fatigue, injury prevention, rehabilitation, and workload [3]. 
It may seem that the more metrics offered by the wearable device, the more attractive the device is to 
the consumer, at both general population and at athlete levels. This has increased the manufacture of 
smartwatches and fitness trackers over the past years. Most of these devices have been scrutinized 
due to their validity and accuracy, resulting in some disappearing from the market. The Apple watch 
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in Q2 2019 had the largest sales in the North American Market with 37.9%, followed by Fitbit (24.2%), 
and Samsung (10.6%) [4]. The Apple watch series 4 contains an accelerometer with a range of 32 g, 
making the device attractive to not only the standard consumer, but also to sports athletes/coaches 
as impact sports (such as boxing, cricket, and tennis, etc.) require wider ranges that most commercial 
wearables currently do not offer. 

The evaluation of accuracy, precision, reliability and overall performance of wearables, 
including the Apple watch, has been the focus of extensive research [5–10]. This includes comparisons 
of heart rate-based devices with electrocardiogram and with ‘golden standard’ devices [5–7]. 
Comparisons have also been conducted between wearables, for the assessment of metrics including 
physical activity, walking speed, step count and energy expenditure [8–10]. 

Most of the literature, however, focuses on validating the accuracy and reliability of the device 
by using post-processed data (i.e., Health App for Apple devices). Every device contains proprietary 
algorithms for data analysis and classification that are not easily accessible to the user; therefore, the 
reliability of the device depends on the processing of the data, rather than on the sensor itself. This 
preliminary study evaluated the pre-processed (raw) data from an Apple watch for the validation of 
its inertial and heart rate sensors. Results were compared with an in-house 9DOF (Nine Degrees of 
Freedom) IMU and Polar H10™. Repeated activities (walking, running and stair climbing) of varying 
duration were conducted by participants of varying age and body mass index (BMI). The Apple 
watch was also validated against counted observations. 

2. Methods 

2.1. Instrumentation and Device Data Acquisition 

The performance of an Apple watch (worn on the wrist) was tested against two different 
wearable technologies. Such technologies included a fully validated in-house generic monitoring 
platform design (Sabel Sense IMU, Griffith University, Nathan, Australia [11,12]), and a chest-based 
heart rate monitor (Polar H10; www.polar.com/au-en). The Apple watch contains 3-axis 
accelerometers, 3-axis gyroscopes, and 3-axis magnetometers. In addition, it contains a heart rate 
monitor based on Photoplethysmography technology [7]. 

The IMU has dimensions 55 × 30 × 13 mm (length × width × height) and a weight of 23 gm. It 
contains wireless connectivity (2.4 GHz). The sensor includes a ±16 g 3-axis accelerometer, a ±2000 °/s 
3-axis gyroscope and a ±7 Gauss 3-axis magnetometer. The maximum sampling rate is 500 Hz. Polar 
H10 is the latest model of Polar Electro Oy. This device has been recognized as the world’s most 
accurate wearable monitor and the ‘golden standard’ device for scientific studies [6], with a 99% 
accuracy when compared with a wired electrocardiogram (ECG). The device is based on a chest strap 
electrode that records the electrical activity of the heart. The ECG raw data is processed by 
proprietary algorithms and transmitted using Bluetooth® to a smart phone application as heart rate 
values per second (sampling rate is 1 Hz). The monitor is controlled by the mobile app ‘Polar Beat’. 
The processed data can be exported and visualized by the on-line analyzer tool ‘Polar Flow’. 

Both the Apple watch and the IMU were set to 50 Hz as it was sufficient to capture the step 
movements. Inertial sensor data from the Apple watch was also validated against counted 
observations. The Apple watch data acquisition was performed using a third-party software named 
‘SensorLog’ (sensorlog.berndthomas.net). SensorLog recorded the raw sensor data and generated csv 
(comma-separated values) files. The recorded data from the Apple watch was transmitted using 
Bluetooth® to a smart phone, which allowed extraction of the csv files. 

To continuously record heart rate data measured by the Apple watch, the watch was placed in 
’workout mode–outdoor walk’. In this mode, the watch recorded approximately 10 to 15 samples per 
minute and the data was automatically synchronized with the Health App from Apple on the smart 
phone. Third-party software named ‘QS Access’ was used to export the heart rate data from the 
Health App into a csv file for later analysis. The Polar H10 supplied the heart rate information at one 
value per second. 
  



Proceedings 2020, 49, 128 3 of 7 

 

2.2. Participants and Protocol 

The sample consisted of participants with a medium level of fitness (age: 55 ± 13 years; weight: 
81.6 ± 10.6 kg; height: 1.76 ± 0.10 m; and BMI: 26.1 ± 0.96 kg/m2). Skin tone for the participants was 
rated as Types III and IV using the Fitzpatrick skin tone scale (Types I–VI) [13]. Participants were 
informed of the reasons for the study and signed a consent form to participate in the study (ethics 
approval number: GU 2017/587). 

The field tests were conducted at a 400 m synthetic tartan surfaced running track with uniform 
consistency under clear weather conditions. 

For the analysis of step counting, participants placed both the Apple watch and the IMU on their 
left arm. The IMU was secured in place with a fabric armband fitted with Velcro™ around the wrist. 
Participants were asked to stand motionless for 10 s at the beginning of the track, then walk for a total 
of 700 m and then stop motionless for 10 s. After a 3 min break, participants were asked to stand 
motionless for 10 s, then jog for a total of 300 m and then stop motionless for 10 s. 

For the analysis of heart rate, the Apple watch was fitted tightly on the participant’s wrist. In 
addition, participants placed the Polar H10 on the chest as per the recommended fitting by Polar. 
Participants were asked to repeat the same protocol for step counting plus an extra test (stair 
climbing) to intensify the physical activity and increase the variability in the heart rate measurements. 
A grandstand (length 100 m with a 30-step staircase) was used for the test. Participants were asked 
to climb up, walk to the next staircase, and climb down. This process was repeated three times for 
each participant. 

2.3. Statistical Analysis 

Three different metrics were used for the inertial sensor and heart rate validation. All data 
processing and statistical analysis were conducted using Matlab® and Microsoft Excel®: 

1) Mean values for step counting and heart rate monitoring using bar charts. 
2) Correlation analysis of raw data using Pearson’s correlation coefficient to examine the strength 

of the relationship between the Apple watch and the benchmark devices. 
3) Bland–Altman analysis [14] was used to assess more accurately the level of agreement between 

the Apple watch and the benchmark devices. The difference between two sets of data and the 
average between them was determined. In addition, the mean bias (mean of the difference), and 
upper and lower Limits of Agreement (LoA) were included in the results. 

3. Results 

3.1. Step Counting Measurements 

For step detection, the raw accelerometer data collected from the Apple watch and from the IMU 
was filtered using a 6th order low-pass digital Butterworth filter with normalized cut-off frequency, 
and zero-phase digital filtering to remove the unwanted peaks and smooth the signal. A peak finder 
algorithm was used to automatically detect the peaks above a minimum peak height. Each peak 
identified by the algorithm indicated a walking or jogging step. 

Figure 1 shows an example of 10 steps recorded by the Apple watch and IMU’s raw unfiltered 
acceleration data, for both walking and jogging, as a function of time. The walking profile shows a 
maximum acceleration of approximately 2 g, and the jogging shows a maximum acceleration of 
approximately 5 g, as would be expected as the intensity of the activity increases. 

Figure 2 shows the mean steps for the 700 m walk and the 300 m jog of all participants added 
together. Both the Apple watch and the IMU showed high accuracy and consistency among 
participants. The small variations on the observed data could correspond to a missed or exceeded 
step located on the tail of the data that was not detected by the sensors; this is due to the sensors being 
placed on the wrist that may not be fully coupled with the leg movement when starting or finishing 
a walk. 
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Figure 1. Example of 10 steps of raw unfiltered acceleration data for the Apple watch and the inertial 
monitoring units (IMU). Walking (left) and jogging (right). 

 

Figure 2. Mean step count measurements for all participants using the Apple watch and the IMU in 
walking and jogging. The data was validated by an observer count. 

The raw acceleration data for the three axes of the Apple watch was extracted for the 700 m walk 
and the 300 m jog. A comparison of the raw unfiltered acceleration data between the Apple watch 
and the IMU was conducted using Pearson correlation and Bland–Altman analysis. Due to the raw 
data having different sample numbers, the data was adjusted to the same timescale using a one-
dimensional linear interpolation [15]. Figure 3 shows the Pearson correlation (left column) and 
Bland–Altman analysis (right column) for all participants. The first row corresponds to walking and 
the second row to jogging. Although the vertical axis was slightly dominant in all sets, the root mean 
square (RMS) was taken as a measure inclusive of all IMU axes.  

On the correlation plots (Figure 3), the solid line represents the positive trend and maximum 
data match. On the Bland–Altman plots, the middle solid line represents the mean (bias) difference 
and the upper and lower solid lines represent the 95% limits of agreement. The total number of scatter 
points in all cases and for all participants was greater than 75,000 samples for walking and 25,000 
samples for jogging. 

 

Figure 3. Correlation (left column) and Bland–Altman analysis (right column) for the Apple watch 
(AW) and IMU acceleration data on walking (top row) and jogging (bottom row). 
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The Pearson correlation coefficients for all participant’s acceleration data was r > 0.95, the 
number of points outside the LoA for walking was 2102 and for jogging is 1262. This gives a percent 
error for walking of 2.6% and for jogging of 5.1%. These results indicate a strong relationship and 
agreement between the acceleration data of the watch and the IMU. Although the total number of 
steps was the same for both devices (Figure 2), the error in the Bland–Altman analysis was due to 
small differences in the raw data related to the sensor’s sensitivity. In any case, the mean bias was 
very close to zero and both the upper and lower LoA were narrow (−0.15 and 0.1 g for walking and 
−0.48 and 0.46 g for jogging). The dispersion and variability in the jogging data, particularly at the 
tail end, suggests that there was more sensitivity in higher acceleration peaks due to stronger ground 
impacts of the feet. 

3.2. Heart Rate Measurements 

A comparison of the mean beats per minute (bpm) value for the Polar H10 and the Apple watch 
was made under walking, jogging and stair climbing activities. The Apple watch in workout mode 
gave approximately 12 heart rate samples per minute, while the Polar H10 gave 60 values per minute. 
Figure 4 shows strong accuracy in each activity for all participants. 

 

Figure 4. Mean heart rate value for the Apple watch and Polar H10 on three different activities: 
walking, jogging and stair climbing. 

Pearson correlation and Bland–Altman analysis of the heart rate were performed to determine 
the level of agreement between the Apple watch and the Polar H10. To account for the different 
number of values recorded per minute, the heart rate data from each device was converted giving a 
heart rate sample every 15 s. Figure 5 shows the correlation between data sets (left column) and the 
Bland–Altman analysis (right column). The first row is walking and the second is jogging. 

The Pearson correlation coefficient was 0.99 in all three cases. The Bland–Altman analysis 
showed a mean bias very close to zero and a narrow LoA (−2.2 and 1.8 bpm for walking and −3.5 and 
4.3 bpm for jogging). The filtered data showed very good agreement from both devices. 

4. Conclusions 

Different wearable technologies have been used to compare the performance of an Apple watch 
(worn on the wrist). Analysis of means, correlations and mean differences using Bland–Altman 
analyses were conducted in order to validate the functionality, accuracy and reliability of the watch. 
Inertial sensors and heart rate optical sensors embedded into the watch were tested through a 
structured protocol of light to moderate physical activities. The experiments assessed total step count, 
heart rate data, and raw acceleration agreement between data sets. All correlations were greater than 
0.95 and all data sets showed high level of agreement using Bland–Altman analysis. The watch 
counted steps and the measured heart rate were highly accurate. Therefore, we conclude that the 
acceleration and the heart rate data could be trusted within acceptable limits of accuracy. 
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Figure 5. Correlation (left column) and Bland–Altman analysis (right column) for the Apple watch 
(AW) and IMU heart rate data on walking (top row) and jogging (bottom row). 
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