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Abstract: Current approaches in science, including most machine and deep learning methods,
rely heavily at their core on traditional statistics and information theory, but these theories are known
to fail to capture certain fundamental properties of data and the world related to recursive and
computable phenomena, and they are ill-equipped to deal with high-level functions such as inference,
abstraction, modelling and causation, being fragile and easily deceived. How is it that some of
these approaches have (apparently) been successfully applied? We explore recent attempts to adopt
more powerful, albeit more difficult methods, methods based on the theories of computability and
algorithmic probability, which may eventually display and grasp these higher level elements of human
intelligence. We propose that a fundamental question in science regarding how to find shortcuts for
faster adoption of proven mathematical tools can be answered by shortening the adoption cycle and
leaving behind old practices in favour of new ones. This is the case for randomness, where science
continues to cling to purely statistical tools in disentangling randomness from meaning, and is
stuck in a self-deluding pattern of still privileging regression and correlation despite the fact that
mathematics has made important advances to better characterise randomness that have yet to be
incorporated into scientific theory and practice.
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1. Introduction

Scientific evidence, even in the case of the greatest scientific advances, relies for the most part on
theories developed decades, if not centuries ago, and it does not necessarily build upon these theories,
but often uses them in misleading ways. We are barely catching up with a theory such as Bayes’, which
dates back 250 years, or with Shannon’s classical information theory, which was developed 80 years
ago. While Shannon’s theory has seen a lot of developments, from Granger causality to transfer
entropy and Partial Information Decomposition, and Bayes’ too, in the form of Bayesian networks and
causal diagrams, they are still fundamentally reliant on classical probability and traditional statistical
approaches. Indeed, Shannon entropy continues to be widely used to quantify randomness despite the
mathematical consensus that established that randomness can only be characterised by algorithmic
randomness (or algorithmic complexity) because recursively generated data will be misidentified as
random by a purely statistical (entropic) approach. A fundamental question in science should concern
how to find shortcuts to the adoption of new mathematical tools to be incorporated more quickly into
practical methods.
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Researchers in the field of Algorithmic Information Theory (AIT) can roughly be divided between,
on the one hand, those who study the algorithmic randomness of infinite sequences and degrees of
randomness, and, on the other hand, those interested in the applications of algorithmic complexity to
various areas of science, when it comes to supplying causal explanations.

It is my strong belief, however, that AIT has the potential to make an impact on the way we
approach science, on our currently predominant data-reliant—as opposed to model-centred—scientific
method. Unfortunately, AIT has had little impact to date, and has often taken the wrong direction
when applied to different areas of science, having focused for far too long on weak methods, and
sometimes misleading assumptions, some of which we explore here.

2. Fooling Ourselves

The following quotation attributed to Arnold Sommerfeld can easily be applied to what has
happened in the case of statistical lossless compression algorithms such as LZW [1], to their misuse
and abuse in applications of algorithmic complexity, and is all the more relevant given the connection
of LZW to entropy, the latter being what Sommerfeld is talking about (in responding to a question
about why he never wrote a book [2]):

Thermodynamics is a funny subject. The first time you go through it, you do not understand
it at all. The second time you go through it, you think you understand it, except for one or
two small points. The third time you go through it, you know you do not understand it, but
by that time you are so used to it, it does not bother you any more.

This opinion can be used also to characterise the way in which popular lossless compression
algorithms such as LZW are exploited, used and abused to claim connections to algorithmic complexity
quite fooling ourselves.

Let me illustrate a common misconception concerning Shannon entropy. At a conference on
computability where I was an invited speaker, I gave a talk on algorithmic complexity related to
causality, and I used as an example of a random variable a process in which an observer is looking
at a stream of digits emerging in their natural order from the digits of the mathematical constant π

in a given base (say base 10), with a view to determining what kind of object it is. The experiment
assumes that the observer is not already in possession of the information that the object in question is
in fact π, so one can model it with a random variable. Immediately, an expert in both Shannon entropy
and algorithmic complexity intervened aggressively, claiming that one could not take π as a random
variable because π was a deterministic constant. Not only did this expert miss the point of the thought
experiment, but despite his mastery of the subject, he did not realise something elementary that speaks
to the weaknesses of the measure, something that is germane to an elementary understanding of both
entropy and algorithmic complexity. In all models in which a random variable is involved, these
variables are variable only in an epistemological sense, as in my thought experiment. Indeed, the
quintessential example of a random variable given in the context of an introduction to Shannon entropy
in any textbook is the process of throwing a die or tossing a coin. Nothing in either of these processes
is random according to classical mechanics, which is believed to govern every aspect of the evolution
of both coins and dice. Indeed, the precise initial conditions, basic force and gravitation laws fully
determine the dice and coin outcomes, making them no different from my experiment with π. It is
merely that we do not have access to the knowledge that π is in fact π, just as we have no access to the
full initial conditions of the coin or die, forcing us to model these processes with random variables.
In [3], we explored a specific example of a network to demonstrate how fragile is Shannon entropy
in the face of language description and object representation and how advisable is to move away
from using exclusively statistical measures (e.g., Shannon entropy or LZW) and put so little to no
effort in methodological innovation. Indeed, when characterising an object by Shannon entropy (or
LZW), one has to make arbitrary decisions, such as the choice of feature of interest (e.g., for a network,
the degree sequence vs. say its adjacency matrix) that can describe the same object but in different
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ways and for each retrieve different and divergent values of, e.g., Shannon entropy. What we did [3]
was to construct a network that had a degree distribution near maximal entropy that determined a
single growing network that when described by its sparse adjacency matrix would suggest it actually
had an entropy limit equal to zero. Shannon entropy is subjective and epistemological; it measures our
ignorance and difficulty estimating the underlying probability distribution, but even experts in the
field often fail to appreciate this and end up fooling themselves.

For example, in what is considered a landmark paper [4], certain conceptual and foundational
mistakes were made and overlooked. The paper claims to instantiate a form of integrated information,
it claims to have found an application, but it is bedevilled by the same fallacy, offering what is
claimed to be a measure of causality (and even consciousness), but one which is arrived at using
tools of a statistical nature that are no more powerful than regression and correlation. In a similar
fashion, landmark papers that made early contributions to the area using information distances can be
reproduced resorting to measures related to Shannon entropy, and on some occasions simpler methods,
such as GC content for genome sequences. The damage done by the use, misuse and abuse of LZW to
“estimate algorithmic complexity” still haunts us to this day.

Machine learning is no stranger to these weaknesses. At the core of most approaches in machine
learning and deep learning there is a function known as cross-entropy, one of the more sophisticated
functions (beyond those based on simple distances). The cross entropy between two probability
distributions is a function that measures the average number of bits needed to identify an event drawn
from each distribution, one being assumed to be ground truth and the other the one to be approximated
by reducing its distance according to the statistical function. It has also widely believed that the power
of deep learning resides in the continuous nature of the search space on which differentiable manifolds
and methods from continuous calculus are needed. We have shown that this is not the case [5]
and that neither continuity nor differentiable search methods are needed to perform a successful
exploration. Moreover, the methods in [5] give a glance of how symbolic computation can reach similar
success to traditional deep learning but requires exponentially more resources at it does implement a
model-driven approach that requires them to build causal chains and state-to-state representations.

The lossless compression approach to algorithmic complexity worked for reasons not related to the
theory of algorithmic complexity (or as a result of it), but because of the already established connection
with Shannon entropy. Indeed, statistical compression algorithms cannot capture all (non-)algorithmic
random properties in data, not only because they are not universal in the Turing sense, but also because
they are designed only to spot repetitions. However, accounting for non-statistical regularities should
be crucial, since these regularities represent the main advantage of using algorithmic complexity over,
for example, Shannon entropy with a uniform probability distribution. There are many papers that
use Shannon entropy (and even popular lossless compression algorithms) to analyse data and do not
make any false connection to algorithmic complexity.

A thorough review of these challenges, limitations and new directions of research to make progress
in the application of algorithmic complexity can be found in [6].

3. How Misconceptions Can Drive a Scientific Agenda and Vice Versa

We used to think that science was entirely objective, but history has taught us that it is also
driven by community choices. Whether these choices lead to radical effects is another matter, but it is
undeniable that this happens at all levels in the practice of science.

One common dictum, for example, would have it that complex systems are those in which
interactions cannot be accounted for in a reductionist fashion, that is, those in which there are too
many interactions among too many elements to be accounted for individually when attempting to
explain their overall behaviour and the fact that they produce a result greater that the sum of their
component elements.

This is all true, but some researchers have indicated that this was already the case before the
advent of complex systems, as distinct from areas such as dynamical systems. Indeed, in the theory
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of dynamical systems, there are objects and processes for which very small changes produce very
different behaviour, without their being any need for interacting elements or too many elements, just
trivial equations and mappings operating on some continuous space or time.

Discrete chaotic systems, such as the logistic map, can exhibit strange attractors whatever their
dimensionality and continuous dynamical systems; the Poincaré–Bendixson theorem establishes that a
strange attractor can only arise in three or more dimensions. Indeed, finite-dimensional linear systems
cannot show complex (chaotic) behaviour. For a dynamical system to display chaotic behaviour, it
must be either nonlinear or infinite-dimensional. However, in all cases, continuous space and/or time
is a requirement by definition, as chaotic behaviour in dynamical systems can only be defined for a
ε of arbitrarily small length, quantifying the distance among initial conditions that make the system
diverge. Millennia-old algorithms such as Euclid’s division algorithms can also be said to be of this
type; the algorithm itself is computable and outputs can diverge for very small changes of the quotient
or dividend (e.g., the sequence of remainders), but the algorithm’s domain is the continuous field of
real numbers.

In contrast, in the theory of computation, everything is discrete at any given point, in both space
and time, and at all times, so the fact that chaotic behaviour research and results may predate what
appeared to be complex behaviour in the simplest of the computer programs over fully discrete regimes
(under an adapted definition of behavioural divergence based on single bit distance enumerations
of initial conditions [7]) came as a surprise when first disclosed by researchers such as Wolfram,
as summarised in [8]. Indeed, this is what I believe set the area of complexity apart and led to its
emergence as a field in its own right, namely the realisation that there are many layers of irreducibility
beyond only uncomputability and unreachability, that of divergent qualitative behaviour intrinsic to
even the most simple computer programs running in full discrete space and time and for the simplest
of the initial conditions [8]. The promise of the field was that it would make a difference in science
and that methods pointed out by Wolfram would deliver a new type of science. One major challenge,
however, has been how to conduct a guided rather than blind and fruitless search for computable
models other than toy models. What we have done is precisely to offer a first set of tools to perform
such an exploration of the space of computable candidate scientific models, in the form of what we call
Algorithmic Information Dynamics.

4. Algorithmic Information Dynamics

Algorithmic Probability and the Universal Distribution approach the challenge of algorithmic
inference [9–11] from the standpoint of the theory of computation. Both algorithmic complexity
and algorithmic probability are not computable but semi-computable, meaning that approximations
from above and below are possible and are deeply related to each other, a formal connection being
represented by the so-called (algorithmic) Coding theorem that establishes that a short computer
program is also algorithmically highly probably and vice versa. Their uncomputability has meant that,
for decades after their discovery, very few attempts were made to apply them to other areas of science,
with most researchers’ reaction to the field, especially as regards applications, being sceptical, their
misgivings arising from the issue of uncomputability.

The notion behind AP is very intuitive. If one wished to produce the digits of π randomly, one
would have to try time after time until one managed to hit upon the first numbers corresponding to
an initial segment of the decimal expansion of π. The probability of success is extremely small: 1/10
digits multiplied by the desired quantity of digits. For example, it would be 1/102400 for a segment of
2400 digits of π. However, if instead of shooting out random numbers one were to shoot out computer
programs to be run on a digital computer, the result would be very different.

A program that produces the digits of π would have a higher probability of being produced by a
computer. Concise and known formulas for π could be implemented as short computer programs that
would generate any arbitrary number of digits of π. We demonstrated in [12] how AP can account
for up to 60% of the simplicity bias in the output distribution of subuniversal models of computation
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when running on a set of random initial conditions, thus strongly suggesting that AP is of fundamental
value in explaining processes in science, even when relaxing the criterion of Turing universality under
which AP was conceived.

Indeed, algorithmic probability is of fundamental interest to science because it can address some of
its most pressing challenges, such as inference, model generation and causation, which are the topics of
interest in our research programme (beyond simple estimations of algorithmic complexity represented
by a single real-number value). This relevance to science was pointed out by Vitányi and colleagues in
a very engaging article [13], and, more recently, in research in areas such as AI and machine learning,
by people such as Marvin Minsky, who claimed that Algorithmic Probability to be one of the most,
if not the most important theory for applications [14]. Approaches to algorithmic complexity and
algorithmic probability (AP) that take into consideration finite resources and applications have been
proposed before, such as resource-bounded Kolmogorov complexity and Universal Search to approach
algorithmic complexity in practice based on, for example, dovetailing all possible programs and cutting
short runtimes.

Unlike most complexity measures that are designed for static objects, except those related to
dynamical systems, the measure of algorithmic complexity I have led the introduction of is adapted
for dynamical systems and designed to characterise the change of algorithmic complexity of an object
evolving over time. The measure is universal in the sense that it can deal with any computable
feature that a system may display over time, either spontaneously or as a result of an external
perturbation/intervention/interaction.

At the core of Algorithmic Information Dynamics [15–17] (AID), the algorithmic causal calculus
that we have introduced, is the quantification of the change of complexity of a system under natural or
induced perturbations, particularly the direction (sign) and magnitude of the difference of algorithmic
information approximations denoted by C between an object G, such as a cellular automaton or a
graph and its mutated version G′, e.g. the flip of a cell bit (or a set of bits) or the removal of an
edge e from G (denoted by G\e = G′). The framework is agnostic to underlying method but it
has been relying on the Block Decomposition Method [18] and the Coding Theorem Method [21]
motivated by Algorithmic Probability. The difference |C(G)− C(G\e)| is an estimation of the shared
algorithmic mutual information of G and G\e. If e does not contribute to the description of G, then
|C(G) − C(G\e)| ≤ log2 |G|, where |G| is the uncompressed size of G, i.e. the difference will be
very small and at most a function of the graph size, and thus C(G) and C(G\e) have almost the
same complexity. If, however, |C(G) − C(G\e)| ≤ log2 |G| bits, then G and G\e share at least n
bits of algorithmic information in element e, and the removal of e results in a loss of information.
In contrast, if C(G)− C(G\e) > n, then e cannot be explained by G alone, nor is it algorithmically not
contained/derived from G, and it is therefore a fundamental part of the description of G, with e as a
generative causal mechanism in G. Or else it is not part of G but has to be explained independently,
e.g. as noise. Whether it is noise or part of the generating mechanism of G depends on the relative
magnitude of n with respect to C(G) and to the original causal content of G itself. If G is random, then
the effect of e will be small in either case, but, if G is richly causal and has a very small generating
program, then e as noise will have a greater impact on G than would removing e from an already short
description of G. However, if |C(G)− C(G\e)| ≤ log2 |G|, where |G| is, e.g., the vertex count of a
graph, or the runtime of a cellular automaton, G, then e is contained in the algorithmic description
of G and can be recovered from G itself (e.g., by running the program from a previous step until it
produces G with e from G\e).

Algorithmic Information Dynamics is an algorithmic probabilistic framework for causal discovery
and causal analysis. It guides a search for computable models and is an alternative or complement
to other approaches and methods of experimental inference, such as statistical machine learning and
classical information theory. AID is related to areas such as computational mechanics and program
synthesis. However, unlike other methods such as Bayesian networks, AID does not rely on graphical
models or calculations of mass probability distributions.
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AID is the result of combining Algorithmic Information Theory, Causation and Perturbation
Analysis where interventions are induced or simulated in an open system where external influences
may be detected and identified by AID (if the signal to noise ratio allows it). AID has laid the
foundations and devised methods to make Algorithmic Information Theory more applicable in
scientific discovery and analysis in a wide range of areas ranging from dynamical systems to cognition
to molecular biology and genetics, and it constitutes an alternative to estimating algorithmic complexity
by popular lossless compression algorithms such as LZW, which are based on entropy rate estimations
removed from some of the key features of algorithmic information.

We have shown how we can infer and reconstruct space-time evolutions by quantification of the
disruptiveness of a perturbation [15,19]. We could then extract a set of generating mechanisms from the
ordered time indices, from least to most disruptive, and produce candidate generating models. Simpler
rules have simpler hypotheses, with an almost perfect correspondence in row order. Some systems
may look more disordered than others, but locally the relationship between single rows is for the most
part preserved (indicating local reversibility).

We have also shown, for example, how evolution seen as a search in the space of computable
instantiations of ‘living’ organisms (simulated by computable processes) produces similar effects to
unexplained phenomena such as diversity explosions and sudden extinctions. Even modularity can be
explained in a natural algorithmic fashion [20].

5. Conclusions

Studying randomness from the computing perspective affords us a framework for studying
the nature of the world that discerns the way in which patterns in the universe are distributed, and
can help make a real difference and advance the practice of science and the validation of scientific
evidence. These tools can significantly contribute to all areas of science, and we should find ways
to speed up the translation and adoption of mature and validated methods from mathematics to
science. Our algorithms have filled a void left by other heuristics and have contributed to enriching
the discussion of approaches rooted in or better motivated by generative mechanisms, first principles
and mature measures of algorithmic information.
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