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Abstract: There are various approaches to the problem of how one is supposed to conduct a statistical
analysis. Different analyses can lead to contradictory conclusions in some problems so this is not
a satisfactory state of affairs. It seems that all approaches make reference to the evidence in the
data concerning questions of interest as a justification for the methodology employed. It is fair to
say, however, that none of the most commonly used methodologies is absolutely explicit about how
statistical evidence is to be characterized and measured. We will discuss the general problem of
statistical reasoning and the development of a theory for this that is based on being precise about
statistical evidence. This will be shown to lead to the resolution of a number of problems.

Keywords: statistical reasoning; statistical evidence; checking model and prior, measuring and
controlling bias; relative belief

1. Introduction

There are a variety of approaches to conducting statistical analyses and most seem well-motivated
from an intuitive point-of-view. If, in any particular context, these all led to approximately the same
result, then this wouldn’t be a problem but this is not the case. With the increasing importance of,
what we will call here, statistical reasoning in almost all areas of science, this ambiguity can be seen as
an important problem to resolve.

It is interesting to note that virtually all approaches make reference to the “evidence in the
data” or even to the concept of “statistical evidence” itself. For example, p-values are considered as
measuring the evidence against a hypothesis although serious doubts have been raised about their
suitability in this regard. Similarly, likelihood ratios are considered as measuring the evidence in the
data supporting the truth of one value versus another and the Bayes factor is considered as a measure
of statistical evidence. There are treatments that recognize the concept of statistical evidence as a
central aspect of statistical reasoning as in [1–7]. There is also a tradition of the consideration of the
meaning of evidence in the philosophy of science, sometimes called confirmation theory, with [8] being
an accessible summary.

While much of this literature has many relevant things to say about statistical evidence, it is
fair to say that there is no treatment that gives an unambiguous definition of what it is together
with developing a satisfactory theory of statistical reasoning based on this. The text [9] summarizes
a number of publications with coauthors that have attempted to deal with this problem. This paper
describes that theory together with some recent developments beyond those described in [10].
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2. Purpose of a Theory of Statistical Reasoning

To start it is necessary to ask: What is the purpose of statistics as a subject or what is its role in
science? This is identified here as providing a theory that gives answers to two questions based on
observed data x and an object of interest Ψ.

E What is a suitable value ψ(x) for Ψ together with an assessment of the accuracy of this estimate?
H Is there evidence that a specified value ψ0 for Ψ is true or false and how strong is this evidence?

The requirement is placed on a theory that the answers to E and H be based on a clear characterization
of the statistical evidence in the data relevant to Ψ.

If the data x was enough to answer these questions unambiguously, that would undoubtedly
be best, but it seems more is needed. There are two aspects of this that need discussion, referenced
hereafter as the Ingredients and Rules of Statistical Inference. These are to be taken as playing the
same roles in a statistical argument as the Premises and Rules of Inference play in a logical argument.
For a logical argument is valid whenever the rules of inference, such as modus ponens, have been
applied correctly to the premises to derive a conclusion, but it is only sound when it is valid and the
premises are consistent and true. Similar considerations apply to statistical reasoning.

3. The Ingredients

There are various criteria that the ingredients necessary for a theory of statistical reasoning should
satisfy. A partial list is as follows.

I1 The ingredients are the minimum number required for a characterization of statistical evidence
so that E and H can be answered.

I2 The ingredients are such that the bias in these choices can be assessed and controlled.
I3 Each ingredient must be falsifiable via the data.

In the majority of statistical problems the ingredients are chosen and are not specified by the
application. As such, the ingredients are subjective which seems to violate a fundamental aspect of
science, namely, the goal of objectivity. The appropriateness of this goal is recognized but rather as
an ideal that is not strictly achievable only approached by dealing with the ingredients appropriately.
I2 suggests that it is possible to choose the ingredients in such a way that they bias the answers to
E and H. This is indeed the case, but as long as the bias can be measured and controlled, this need
not be of concern. I3 is another way of dealing with the inherent subjectivity in a statistical analysis.
For it is reasonable to argue that the chosen ingredients are never correct, only serving as devices
that allow for a characterization of evidence so that the rules of inference can be applied to answer
E and H. Their “correctness” is irrelevant unless the choices made are contradicted via the objective,
when collected correctly, data x. The gold standard requires falsifiability of all ingredients to help place
statistical reasoning firmly within the realm of science.

So for a theory of statistical reasoning we need to state what the ingredients are and how to check
for their reasonableness. The following ingredients, beyond the data x, are necessary here.

Model { fθ : θ ∈ Θ} is a collection of conditional probability distributions for x ∈ X given θ such that
the object of interest ψ = Ψ(θ) is specified by the true distribution that gave rise to x.

Prior π is a probability distribution on Θ.
Delta δ is the difference that matters so that dist(ψ1, ψ2) ≤ δ, for some distance measure dist,

means that ψ1 and ψ2 are, for practical purposes, indistinguishable.

The model and prior specify a joint probability distribution for ω = (θ, x) ∼ π(θ) fθ(x). As such
all uncertainties are handled within the context of probability interpreted here as measuring belief,
no matter how the probabilities are assigned.
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The role of δ will be subsequently discussed but it raises an interesting and relevant point
concerning the role of infinities in statistical modelling. The position taken here is that whenever
infinities appear their role is as approximations as expressed via limits rather than representing reality.
For example, data arises via a measurement process and as such all data are measured to a finite
accuracy. So data is discrete and moreover sample spaces are bounded as measurements cannot be
arbitrarily large/small positively or negatively. So whenever continuous probability distributions are
used these are considered as approximations to essentially finite distributions. Little is lost by taking
this view of things and there is a substantial gain for the theory through the avoidance of anomalies.

The question now is how to choose the model and the prior? Unfortunately, we are somewhat
silent about general principles for choosing a model, but when it comes to the prior for us this is by
an elicitation algorithm which explains why the prior in question has been chosen. An inability to
come up with a suitable elicitation suggests a lack of sufficient understanding of the scientific problem
or an inappropriate choice of model where the real world meaning of θ is not clear. The existence
of a suitable elicitation algorithm could be viewed as a necessity to place a context within the gold
standard but, given the way models are currently chosen, we do not adopt that position. Still whatever
approach is taken to choosing π, it is subject to I2 and I3. As will be seen, the implementation of
I2 requires the characterization of statistical evidence and so discussion of this is delayed and I3 is
addressed next.

4. Checking the Ingredients

If the observed data x is surprising (in the “tails” of) for each distribution in { fθ : θ ∈ Θ}, then this
suggests a problem with the model, and otherwise the model is at least acceptable. There are a number
of approaches available for checking the model and this is not discussed further here, although the
model is undoubtedly the most important ingredient chosen.

To be a bit more formal note that, when T is a minimal sufficient statistic for the model,
then the joint factors as π(θ) fθ(x) = π(θ) fθ,T(T(x)) f (x | T(x)) = π(θ | T(x)mT(T(x)) f (x | T(x))
where f (· | T(x)) is a probability distribution, independent of θ, available for model checking, mT is the
prior (predictive) distribution of T, available for checking the prior, while π(· | T(x)) is the posterior of
θ and provides probabilities for the inference step. The paper [11] proposed using the prior predictive
distribution of x for jointly checking the model and prior but, to ascertain where a problem exists when
it does, it is more appropriate to split this into checking the model first and, when the model passes,
then check the prior.

A prior fails when the true value lies in its tails. The paper [12] proposed using the tail
probability MT(mT(t) ≤ mT(T(x))) for this purpose and [13] established that generally MT(mT(t) ≤
mT(T(x))) → Π(π(θ) ≤ π(θtrue)) as the amount of data increases. This approach also included
conditioning on ancillary statistics, to remove variation irrelevant to checking the prior, and further
factorizations of mT(T(x)) that allow for checking of individual components of the prior. The paper [14]
generalizes this to provide a fully invariant check that connects nicely with the measure of evidence
used for inference as discussed in Section 5. It is shown in [15] that, when prior-data conflict exists, then
inferences can be very sensitive to perturbations of the prior. The paper [16] defines what is meant by
a prior being weakly informative with respect to another, quantifying this in terms of fewer prior-data
conflicts expected a priori. One then specifies a base elicited prior and a hierarchy of successively more
weakly informative priors so, if a conflict is detected, a prior can be replaced by one more weakly
informative progressing up the hierarchy until conflict is avoided. The hierarchy of priors is not
dependent on the data.

5. The Rules of Statistical Inference

There are three rules that are used to determine inferences and stated here for a probability model
(Ω,F , P). Suppose interest is in whether or not the event A ∈ F is true after observing C ∈ F where
both P(A) > 0 and P(C) > 0.
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R1 Principle of conditional probability: Beliefs about A, as expressed initially by P(A), are replaced
by P(A |C).

R2 Principle of evidence: Observing C is evidence in favor of (against, irrelevant for) A when
P(A |C) > (<,=)P(A).

R3 Relative belief: The evidence is measured quantitatively by the relative belief ratio RB(A |C) =
P(A |C)/P(A).

While R1 does not seem controversial, its strict implementation in Bayesian contexts demands proper
priors and priors that do not depend on the data. R2 also seems quite natural and, as will be seen,
really represents the central core of our approach to statistical reasoning. R3 is perhaps not as obvious,
but it is clear that RB(A |C) > 1(<,=) indicates that evidence in favor of (against, irrelevant for)
A has been obtained. In fact, the relative belief ratio only plays a role when it is necessary to order
alternatives. In the Bayesian context, when interest is in ψ = Ψ(θ), then generally the relative belief
ratio at a value ψ equals

RBΨ(ψ | x) = lim
ε→0

RB(Nε(ψ) | x) = πΨ(ψ | x)/πΨ(ψ)

where neighborhoods Nε(ψ) of ψ satisfy Nε(ψ)
nicely→ {ψ} as ε→ 0 and the equality on the right holds

whenever the prior density πΨ of Ψ is positive and continuous at ψ.
There are other valid measures of evidence in the sense that they have a cut-off that determines

evidence in favor or against, as specified by R2, and can be used to order alternatives. For example,
the difference P(A |C)− P(A) with cut-off 0, or the Bayes factor BF(A |C) = Odds(A |C)/Odds(A) =

RB(A |C)/RB(Ac |C) with cut-off 1, could be used. As indicated, BF can be defined in terms of RB
but not conversely. Since RB(A |C) > 1 iff RB(Ac |C) < 1, the Bayes factor is not a comparison of the
evidence for A with the evidence for Ac, as is sometimes claimed. Furthermore, in the continuous
case, when BF is defined as a limit it is equal to RB. The relative belief ratio, or equivalently any
strictly increasing function of RB, has other advantages and possesses various optimality properties,
as discussed in [9,17], and so we adopt it here.

5.1. Problem E

Suppose that the range of possible values for ψ = Ψ(θ) is also denoted by Ψ. Then R3 determines
the relative belief estimate as ψ(x) = arg supψ∈Ψ RBΨ(ψ | x) as this maximizes the evidence in favor as
supψ∈Ψ RBΨ(ψ | x) ≥ 1 with the inequality generally strict. To measure the accuracy of ψ(x) there are
a number of possibilities but the plausible region PlΨ(x) = {ψ : RBΨ(ψ | x) > 1}, the set of ψ values
where there is evidence in favor of the value being true, is surely central to this. If the “size”, such as
volume or prior content, of PlΨ(x) is small and its posterior content ΠΨ(PlΨ(x) | x) is large, then this
suggests that an accurate estimate has been obtained.

There are several notable aspects of this. The methodology is invariant, so if interest is in
λ = Λ(Ψ(θ)), where Λ is 1-1 and smooth, then λ(x) = Λ(ψ(x)) and PlΛ(x) = Λ(PlΨ(x)). While ψ(x)
can also be thought of as the MLE from an integrated likelihood, that approach does not lead to
PlΨ(x) because likelihoods do not define evidence for specific values. Most significantly, the set
PlΨ(x) is completely independent of how evidence is measured quantitatively. In other words, if any
valid measure of evidence is used, then the same set PlΨ(x) is obtained. This has the consequence
that, however we choose to estimate Ψ via an estimator that respects the principle of evidence,
then effectively the same quantification of error is obtained. This points to the possibility of using
some kind of smoothing operation on ψ(x) to produce values that lie in PlΨ(x) when this is considered
necessary. It is also possible to use, as part of measuring the accuracy of ψ(x), a γ-relative belief
credible region for Ψ, namely, CΨ,γ(x) = {ψ : RBΨ(ψ | x) ≥ cΨ,γ(x)} where cΨ,γ(x) = infc{c : ΠΨ({ψ :
RBΨ(ψ | x) > c} | x) < γ}. It is necessary, however, that γ ≤ ΠΨ(PlΨ(x) | x) otherwise CΨ,γ(x)
contains values for which there is evidence against and so would contradict R2.

Consider now a very simple example which demonstrates some of the benefits of this approach.
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Example 1. Prosecutor’s Fallacy.

Assume a uniform probability distribution on a population of size N of which some member has committed
a crime. DNA evidence has been left at the crime scene and suppose this trait is shared by m � N of the
population. A prosecutor is criticized because they conclude that, because the trait is rare and a particular
member possesses the trait, then they are guilty. In fact they misinterpret P(“has trait” | “guilty”) = 1 as the
probability of guilt rather than P(“guilty” | "has trait”) = 1/m which is small if m is large. However, this
probability does not reflect the evidence of guilt. For, if you have the trait, then clearly this is evidence in favor of
guilt. Note that

RB(“guilty” | "has trait”)) =
P(“guilty” | “has trait”)

P(“guilty”)
=

1/m
1/N

=
N
m

> 1

RB(“not guilty” | "has trait”)) =
P(“not guilty” | “has trait”)

P(“not guilty”)
=

(m− 1)/m
(N − 1)/N

=
N

N − 1
m

m− 1
< 1

and Pl(“has trait”) = {“guilty”} with posterior content 1/m. So there is evidence of guilt, and the prosecutor
is correct to conclude this, but the evidence is weak whenever m is large and in such a context a conviction does
not seem appropriate.

It is notable that the MAP (maximum a posteriori) estimate is “not guilty” . A weakness of
MAP/HPD inferences is their lack of invariance under reparameterizations. This example shows,
however, that, even in very simple situations, these inferences are generally inappropriate because
they do not express evidence properly. The example also demonstrates a distinction between decisions
and inferences. Clearly when m is large there should not be a conviction on the basis of weak evidence.
However, suppose that “guilty” corresponds to being a carrier of a highly infectious deadly disease
and “has trait” corresponds to some positive (but not definitive) test for this, then the same numbers
should undoubtedly lead to a quarantine. In essence a theory of statistical reasoning should tell us
what the evidence says and decisions are made, partly on this basis, but employing many other criteria
as well.

5.2. Problem H

It is immediate that RBΨ(ψ0 | x) is the evidence concerning H0 : Ψ(θ) = ψ0. The evidential
ordering implies that the smaller RBΨ(ψ0 | x) is than 1, the stronger the evidence is against H0 and the
bigger it is than 1, the stronger the evidence is in favor of H0. How, however, is one to measure this
strength? In [18] it is proposed to measure the strength of the evidence via

ΠΨ (RBΨ(ψ | x) ≤ RBΨ(ψ0 | x) | x) (1)

which is the posterior probability that the true value of ψ has evidence no greater than that obtained
for the hypothesized value ψ0. When RBΨ(ψ0 | x) < 1 and System (1) is small, then there is strong
evidence against H0 since there is a large posterior probability that the true value of ψ has a larger
relative belief ratio. Similarly, if RBΨ(ψ0 | x) > 1 and System (1) is large, then there is strong evidence
that the true value of ψ is given by ψ0 since there is a large posterior probability that the true value is in
{ψ : RBΨ(ψ | x) ≤ RBΨ(ψ0 | x)} and ψ0 maximizes the evidence in this set. The strength measurement
here results from comparing the evidence for ψ0 with the evidence for each of the possible ψ values.

When H0 is false, then RBΨ(ψ0 | x) converges to 0 as does System (1). When H0 is true, then
RBΨ(ψ0 | x) converges to its largest possible value (greater than 1 and often ∞) and, in the discrete
case System (1) converges to 1. In the continuous case, however, when H0 is true, then System (1)
typically converges to a U(0, 1) random variable. This is easily resolved by requiring that a deviation
δ > 0 be specified such that if dist(ψ1, ψ2) < δ, where dist is some measure of distance determined
by the application, then this difference is to be regarded as immaterial. This leads to redefining H0

as H0 = {ψ : dist(ψ, ψ0) < δ} and typically a natural discretization of Ψ exists with H0 as one of its
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elements. With this modification System (1) converges to 1 as the amount of data increases when
H0 is true. Some discussion on determining a relevant δ can be found in [19] and [20]. Typically the
incorporation of such a δ makes computations easier as then there is no need to estimate densities
when these are not available in closed form.

Consider a simple example where some issues arise that require a discussion of bias to resolve.

Example 2. Jeffreys–Lindley Paradox.

Suppose x = (x1, . . . , xn) is i.i.d. N(µ, σ2
0 ) with σ2

0 known and π is a N(µ∗, τ2
∗ ) prior and the hypothesis

is H0 : µ = µ0. So

RB(µ0 | x) =
(

1 +
nτ2
∗

σ2
0

)1/2

exp

−1
2

(
1 +

σ2
0

nτ2∗

)−1 (√
n(x̄− µ0)

σ0
+

σ0(µ∗ − µ0)√
nτ2∗

)2

+
(µ0 − µ∗)

2

2τ2
0

 ,

which, in this case is the same as the Bayes factor for µ0 obtained via Jeffreys’ mixture approach. From this it is
easy to see that RB(µ0 | x)→ ∞ as τ2

∗ → ∞ or, when
√

n|x̄− µ0|/σ0 is fixed, as n→ ∞. If this is calibrated
using the strength then, under these circumstances

Π (RB(µ | x) ≤ RB(µ0 | x) | x)→ 2(1−Φ(
√

n|x̄− µ0|/σ0)) (2)

the classical p-value for assessing H0. The Jeffreys–Lindley paradox is the apparent divergence between
RB(µ0 | x) and the p-value as measures of evidence concerning H0. For example, see [21,22] for some recent
discussion of the paradox. Using the relative belief framework, however, it is clear that while RB(µ0 | x) may
be a large value, and so apparently strong evidence in favor, System (2) suggests it is weak evidence in favor.
This does not fully explain why this arises, however, as clearly when

√
n|x̄− µ0|/σ0 is large, then we would

expect there to be evidence against. To understand why this discrepancy arises, it is necessary to consider bias as
discussed in the next section.

Another aspect of System (2) is of interest because it raises the obvious question: Is the classical
p-value a valid measure of evidence? The answer is no according to our definition, but the difference

2
(

1−Φ
(√

n|x̄− µ0|
σ0

))
− 2

1−Φ


log

(
1 +

nτ2
∗

σ2
0

)
) +

(
1 +

nτ2
∗

σ2
0

)−1
(x̄− µ∗)

2

τ2
0

1/2

 ,

of tail probabilities with cut-off 0, is a valid measure of evidence. Note that the right-most tail
probability converges almost surely to 0 as n → ∞ or τ2

0 → ∞ and this implies that, if the classical
p-value is to be used to measure evidence, the significance level has to go to 0 as n increases. Note that
if the N(µ∗, τ2

∗ ) prior is replaced by a Uniform(−m, m) prior, then the same conclusion is reached as
n→ ∞ or as m→ ∞. These conclusions are similar to those found in [23,24].

6. Measuring Bias

Perhaps the most serious concern with Bayesian methodology is with the issue of bias. Can the
ingredients be chosen in such a way that the results are a foregone conclusion with high prior
probability? To answer this it is necessary to be precise about the meaning of bias and the principle of
evidence provides this. Even though we will use the relative belief ratio in the discussion, the bias
measures discussed are exactly the same for any measure of evidence satisfying R2. The approach to
measuring bias described here for problem H appeared in [18] and this has since been extended to
problem E in [25] where also links with frequentism are established.

Bias should be measured a priori although a post hoc measurement is also possible. In essence
the bias numbers give a measure of the merit of a statistical study. Studies with high bias cannot be
considered as being reliable irrespective of the correctness of the ingredients.
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Consider hypothesis H0 : Ψ(θ) = ψ0 and let M(· |ψ) denote the prior predictive distribution
of the data given that Ψ(θ) = ψ. In general it is possible for there to be a high prior probability
that evidence against H0 will be obtained even when it is true. Bias against H0 is thus measured
by M(RBΨ(ψ0 | x) ≤ 1 |ψ0). If M(RBΨ(ψ0 | x) ≤ 1 |ψ0) is large, then obtaining evidence against
H0 seems like a foregone conclusion and subsequently finding evidence against is thus of dubious
value. Similarly, if there is a high prior probability of obtaining evidence in favor of H0 even when it
meaningfully false, then actually obtaining such evidence based on observed data is not compelling.
Bias in favor of H0 is measured by supψ∗∈{ψ: dist(ψ,ψ0)≥δ} M(RBΨ(ψ0 | x) ≥ 1 |ψ∗) and note the necessity
of including δ so that the measure is based only on those values of ψ that are meaningfully different
from ψ0. Typically M(RBΨ(ψ0 |D) ≥ 1 |ψ∗) decreases as dist(ψ∗, ψ0) increases, so the supremum can
then be taken instead over {ψ : dist(ψ, ψ0) = δ}.

The following example illustrates the relevance of bias in favor and, in particular, the dangers
inherent in using diffuse priors to represent ignorance.

Example 2. (Continued).

The bias against and bias in favor can be computed in closed form in this case, see [25]. Table 1 gives
some values for the bias against when testing the hypothesis H0 : µ = 0 when σ2

0 = 1 for two priors. The
results here illustrate something that holds generally in this case. Provided the prior variance τ2

∗ > σ2
0 /n, the

maximum bias against is achieved when the prior mean µ∗ equals the hypothesized mean µ0. This turns out
to be very convenient as controlling the bias against for this case controls the bias against everywhere. This
seems paradoxical, as the maximum amount of belief is being placed at µ0 when µ∗ = µ0. It is clear, however,
that the more prior probability that is assigned to a value the harder it is for the probability to increase. This is
another example of a situation where evidence works somewhat contrary to our intuition based on how belief
works. Another conclusion from Table 1 is that bias against is not a problem. Provided the prior is not chosen too
concentrated, this is generally the case, at least in our experience.

Table 1. Bias against for the hypothesis H0 = {0} with a N(µ∗, τ2
∗ ) prior for different sample sizes n

with σ0 = 1 in Example 2.

n (µ∗, τ2
∗) = (1, 1) (µ∗, τ2

∗) = (0, 1)

5 0.095 0.143
10 0.065 0.104
20 0.044 0.074
50 0.026 0.045

100 0.018 0.031

As discussed in [25], when τ2
∗ → ∞ the bias against goes to 0 and the bias in favor goes to 1.

This explains the phenomenon associated with the Jeffreys–Lindley paradox, as taking a very diffuse
prior induces extreme bias in favor. So this argues against using arbitrarily diffuse priors. Rather one
should elicit the value for (µ∗, τ2

∗ ), prescribe the value of δ and choose n to make the biases acceptable.
The accuracy of a valid estimate of ψ is measured by the size of the plausible region PlΨ(x) = {ψ :

RBΨ(ψ | x) > 1}. As such, if the plausible region is reported as containing the true value and it does not,
then the evidence is misleading. Biases in estimation problems are thus measured by prior coverage
probabilities associated with PlΨ(x) and the implausible region ImΨ(x) = {ψ : RBΨ(ψ | x) < 1},
the set of values for which there is evidence against. More details on this can be found in [25].

The choice of the prior can be used somewhat to control bias but typically a prior that lowers
one bias raises the other. It is established in [9] that, under quite general circumstances, both biases
converge to 0 as the amount of data increases. So bias can be controlled by design a priori. There is
a close connection between measuring bias for problems H and E and moreover controlling bias leads
to confidence properties for PlΨ(x). Frequentism is thus seen as an aspect of design while inference is
Bayesian and based on the observed data only. These issues are extensively discussed in [25].
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7. Conclusions

This paper has been a survey of a foundational approach to a theory of statistical reasoning. Some
recent applications to practical problems of some interest can be found in [26] (multiple testing and
sparsity) and [27] (quantum physics).
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