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Abstract: In this article, a new perspective on the Kauzmann point is presented. The “ideal glass
transition” that occurs at the Kauzmann temperature is the point at which the configurational entropy
of an undercooled metastable liquid equals that of its crystalline counterpart. We model solidifying
liquids by using a quaternion orientational order parameter and find that the Kauzmann point is
a critical point that exists to separate crystalline and non-crystalline solid states. We identify the
Kauzmann point as a first-order critical point, and suggest that it belongs to quaternion ordered
systems that exist in four- or three-dimensions. This “Kauzmann critical point” can be considered
to be a higher-dimensional analogue to the superfluid-to-Mott insulator quantum phase transition
that occurs in two- and one-dimensional complex ordered systems. Such critical points are driven by
tuning a non-thermal frustration parameter, and result due to characteristic softening of a ‘Higgs’ type
mode that corresponds to amplitude fluctuations of the order parameter. The first-order nature of the
finite temperature Kauzmann critical point is a consequence of the discrete change of the topology
of the ground state manifold of the quaternion order parameter field that applies to crystalline and
non-crystalline solids.

1. Introduction

The nature of the glass transition is widely thought to be one of the most challenging open
problems in condensed matter physics [1–4]. Despite their ubiquity, a fundamental understanding
of amorphous solids and the glass transition has yet to be obtained. This is in stark contrast to our
understanding of crystalline solids, which form by first-order phase transitions and in which phonons
(collective Nambu–Goldstone modes) transport thermal energy. Unlike crystallization, glass formation
is non-equilibrium and results as an undercooled liquid breaks ergodicity to become a rigid solid.

Glass transitions are highly dependent on cooling rate; with slower cooling rates, undercooled
liquids may remain ergodic to lower temperatures. As the temperature of an undercooled liquid
decreases, the difference in entropy between the liquid and crystalline solid phase decreases. Because
the entropy of undercooled fluids declines faster with temperature than does crystal entropy, this
results in an entropy paradox at a certain finite temperature (the Kauzmann temperature TK) that may
be achieved in the limit of an infinitely slow cooling rate [5–7]. An “ideal glass”, i.e., one that forms
at the Kauzmann temperature, has a configurational entropy that matches its crystalline counterpart.
This is known in the literature as the Kauzmann entropy paradox [5–7]. “Ideal glass transitions” have
never been obtained in the laboratory, as any real glass transition occurs at a temperature higher than
TK due to kinetic constraints that are responsible for a loss of ergodicity [8]. Yet, the underlying physics
that gives rise to the Kauzmann entropy paradox presents an interesting open problem.
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The objective of this article is to describe the origins of the Kauzmann entropy paradox, in light of
the application of a quaternion orientational order parameter. This approach makes use of principles
of spontaneous symmetry breaking, and of topological-ordering, that are known to play key roles
in understanding condensed matter. Analogies between solidification and the formation of complex
ordered states of matter, in two- and one-dimensions, are developed in order to frame the Kauzmann
point as a critical point that exists to separate crystalline and glassy solid states.

Topological properties of the free energy functions that apply to crystalline and glassy solids
are compared, and the roles of the two types of fundamental excitations: massless phase modes
(Nambu–Goldstone) and a massive amplitude mode (‘Higgs’) are discussed. These considerations
enable the characterization of the “ideal glass transition," at the finite Kauzmann temperature, as
a first-order critical point similar to the second-order superfluid/Mott-insulator quantum phase
transition (QPT) that occurs in two- and one-dimensions [9].

2. Crystalline-to-Glass First-Order Critical Point and the Kauzmann Entropy Paradox

Quantum phase transitions [10] exist for O(N) quantum rotor models of N-vector ordered
systems, that exist in N or N − 1 dimensions, which are constructed by taking into account both
potential and kinetic energy terms. Such QPTs [10] are driven by tuning a dimensionless frustration
parameter (g), that is a measure of the ratio of kinetic energy to potential energy. In complex ordered
systems, an order parameter with N = 2 components develops, and O(2) quantum rotor models have
been applied extensively to understand the nature of the superfluid/Mott-insulator QPT in two- and
one-dimensions [9]. That is, in two- and one-dimensions, such O(2) quantum rotor models give the
dynamics of the complex order parameter (Ψ = |Ψ|eîθ) near a QPT between phase-coherent superfluid
(|Ψ| > 0) and phase-incoherent Mott-insulator (|Ψ| = 0) states.

In complex ordered systems, the free energy function has the form of a conventional ‘Mexican hat’
(Figure 1A) where the amplitude degree of freedom of the order parameter takes on a constant non-zero
value at its basin. Around the symmetry-broken ground state, two mode types exist: a single massless
Nambu–Goldstone mode that is related to fluctuations in the scalar phase angle θ, and a massive ‘Higgs’
mode that is related to amplitude variations in Ψ. For complex ordered systems that exist in two- or
one-dimensions, as opposed to 3D complex ordered systems, phase-coherent superfluid ground states
are achieved via a Kosterlitz–Thouless topological-ordering transition in which vortex defects and
anti-defects form bound states (Figure 2). In the classical limit, i.e., in absence of kinetic energy effects,
the scalar phase angle θ acquires a definite value below the Kosterlitz–Thouless transition—through
breaking of rotational symmetry—resulting in a perfectly phase-coherent superfluid ground state.
As the amount of frustration reaches a critical value, in the vicinity of the QPT to the phase-incoherent
Mott-insulator, there is a characteristic softening of the excitation gap (or mass) of the ‘Higgs’ amplitude
mode [9]. This softening transforms the free energy into a function with a minimum at |Ψ| = 0 in the
phase-incoherent Mott-insulating state [9] (Figure 1B).

The order of the quantum phase transition, that belongs to an O(N) quantum rotor model, in N or
N − 1 dimensions, can be discerned by taking note of changes in the topological properties of the free
energy function in its vicinity. In the case of the superfluid/Mott-insulator QPT, the ‘Mexican hat’ free
energy function that applies to superfluids is circular and the free energy of the Mott-insulator retains
U(1) ∼= S1 symmetry at the origin. Thus, the superfluid/Mott-insulator QPT is a continuous transition
and is therefore of second-order. Such a second-order QPT may occur at zero Kelvin (Figure 3A), and
describes a change in the ground state as a result of quantum fluctuations arising from the Heisenberg
uncertainty principle [10].
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Figure 1. (A) The ‘Mexican hat’ free energy function of complex ordered systems whose order
parameter has the form Ψ = |Ψ|eîθ . In phase-coherent superfluid phases, |Ψ| > 0 and a massless
Nambu–Goldstone and a massive Higgs modes arise. (B) On approaching the superfluid/Mott
insulator QPT in two- and one dimensions [9], the free energy function transforms to one with a
minimum at |Ψ| = 0 at a critical value of frustration (gC) [Reproduced from Ref. [9]]

Along similar lines of reasoning, it has recently been proposed by the authors that
orientational-order in crystalline solids may be described by a quaternion order parameter [11,12] alike
phase-coherence in complex ordered superfluids. The quaternion orientational order parameter that
is adopted has the form: Ψ = |Ψ|en̂θ where θ ∈ [0, π] is a rotation angle and n̂ is a unit-length vector
quaternion (n̂2 = −1) that acts as an axis of rotation. This quaternion orientational order parameter
depends upon three scalar phase angle parameters (θ, θ1 ∈ [0, π] and θ2 ∈ [0, 2π]) and a single
amplitude degree of freedom (|ψ|). In four- and three-dimensions, O(4) quantum rotor models apply
to mathematically model quaternion ordered systems—as these may be considered to be “restricted
dimensions” for quaternionic order parameters in the Hohenberg–Mermin–Wagner sense [13–15].
When applied to the solidification problem, the critical point that belongs to O(4) quantum rotor
models is anticipated to separate crystalline (i.e., orientationally-ordered) and non-crystalline (i.e.,
orientationally-disordered) solids.

         (TBEC > T > TKT)                   ( T < TKT )             T = 0 K

(A)  (B)  (C)  

Figure 2. Classical 2D/1D O(2) rotor model. (A) An abundance of misorientational fluctuations
develops below the bulk Bose-Einstein condensation temperature (TBEC), and may be discretized
as a plasma of isolated point defects and anti-defects. (B) As the temperature is lowered below the
Kosterlitz–Thouless transition temperature (TKT), complementary defects/anti-defects begin to form
bound pairs. (C) As the temperature approaches 0 K, defects and anti-defects that comprise bound
states come together and annihilate. In the absence of frustration, no signed defects persist to the
ground state that is perfectly phase-coherent.
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Figure 3. (A) Complex ordered systems (N = 2) that exist in 2D/1D are mathematically described
using O(2) quantum rotor models, and admit a second-order quantum critical point at absolute zero
temperature [16] that is known as the superfluid/Mott-insulator QPT [9]. (B) Solidification in four-
and three-dimensions, as characterized by a quaternion orientational order parameter (N = 4), may
be described using O(4) quantum rotor models. Such O(4) quantum rotor models admit a critical
point that is first-order which may be identified with the “ideal glass transition”, that occurs at a finite
Kauzmann [5] temperature.

Physical crystalline solids are anticipated to develop via a defect-driven topological-ordering
transition [12,17], in analogue to the Kosterlitz–Thouless mechanism [18,19] that allows for the
realization of phase-coherent superfluids in two- and one-dimensions. While vortices are available to
complex ordered systems (i.e., π1(S1) first homotopy group defects), third homotopy group defects are
available to quaternion ordered systems (π3(S3)). Just as vortices are points in the two-dimensional
complex plane, third homotopy group defects are points in the four-dimensional quaternion plane.
In “restricted dimensions” (Hohenberg–Mermin–Wagner theorem [13–15]), defect binding via a
Kosterlitz–Thouless mechanism is considered necessary to prevent the mobility defects and their
misorientational fluctuations such that phase-coherency or orientational-order may be obtained.

In addition to third homotopy group defects that belong to quaternion ordered systems,
as a consequence of the discrete orientational-order in clustered undercooled fluids, closed-loop
(fundamental group) defects [20–22] known as disclinations exist in solidifying atomic systems
just below the melting temperature. Just as complementary third homotopy group point defects
form bound pairs on crystallization, disclinations of equal and opposite sign come together to form
dislocations [23–26]. At absolute zero temperature in perfect crystals, i.e., those with defect-free
ground states, definite values for the scalar phase angle parameters of the quaternion orientational
order parameter are obtained as all bound pair excitations come together and annihilate.

In the presence of finite geometrical frustration effects, on approaching the Kauzmann critical
point from the limit of a perfect crystal, crystalline solid states may form in which the local
orientational-order is incompatible with long-range crystallographic packing. Examples of such
structures are topologically close-packed Frank–Kasper crystalline solids [27,28], in which geometric
frustration [29,30] prevents the development of long-range icosahedral orientational-order. Such
geometrically frustrated crystalline structures (e.g., Frank–Kasper) are stabilized in the ground state by
the inclusion of a periodic arrangement of signed topological defects. In particular, frustration-induced
signed disclination lines that are present carry negative curvature and form what is known as a “major
skeleton network” (Figure 4). An entangled array of negative disclination lines is an attractive model
for the structure of glasses [22,29,31], that form in the limit of geometrical frustration above a critical
value. Thus, topologically close-packed crystalline solids are similar to 2D/1D superfluids in the limit
of finite frustration effects (e.g., superconducting Josephson junction arrays in transverse magnetic
field [32]) and orientational-disorder in glassy solids is akin to phase-incoherence in Mott-insulators [9].
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“Major Skeleton Network”

Figure 4. Geometrically-frustrated crystalline structures are topologically close-packed, and are
stabilized in the ground state by the inclusion of a periodic arrangement of frustration-induced
topological defects. Ordered arrangements of negative wedge disclinations [27,28] are known as
“major skeleton networks.” Signed third homotopy group defects also form a periodic arrangement in
geometrically-frustrated crystalline solid ground states, but are not visible as a consequence of their
nature as points in four-dimensions. [Reproduced from Ref. [33]]

In crystalline solids, the ground state manifold of the quaternion order parameter field has the
topology of a three-dimensional torus (T3 ∼= S1 × S1 × S1) that accommodates periodic boundary
conditions. This can be viewed as a higher-dimensional version of the conventional ‘Mexican hat’ free
energy function that applies to complex ordered superfluids (Figure 1A). Around the symmetry-broken
crystalline ground state, there are: three massless phonon modes (Nambu–Goldstone), and a massive
mode (‘Higgs’) that is related to amplitude variations in Ψ. Softening of the excitation gap of the
amplitude mode is anticipated as frustration is increased to approach the critical point that belongs
to O(4) quantum rotor models that exist in 4D/3D, in line with the behavior of the ‘Higgs’ mode
in the vicinity of the 2D/1D superfluid/Mott-insulator transition [9]. This softening transforms the
ground state manifold into a function with a minimum located at |Ψ| = 0, at the critical point, which
retains SU(2)/H′ symmetry at the origin (where H′ is the binary polyhedral group of preferred local
orientational order H ∈ SO(3), and SU(2) ∼= S3).

Owing to the discontinuous change in the genus topological invariant of the ground state manifold
that applies to crystalline and glassy solids, the frustration-induced critical point is of first-order and
thereby must occur at a finite temperature (Figure 3B). This first-order critical point may be identified
as the Kauzmann point [5], that occurs at the finite Kauzmann temperature (i.e., the “ideal glass
transition”). The Kauzmann entropy paradox, where the configurational entropy of an undercooled
liquid and its crystalline counterpart are equal, is physically acceptable at such a finite temperatures
but would not be so at the absolute zero of temperature. While the finite temperature nature of the
“ideal glass transition” is well-understood based upon thermodynamic principles, the topological
interpretation of its first-order nature presented herein is novel.

3. Conclusions and Outlook

The abundance of literature that exists on the nature of both real and “ideal” glass transitions
clearly reflects the importance of the free energy landscape in providing a qualitative explanation
of the phenomenon. In this article, we have suggested that crystallization and glass formation can
be understood within a unified framework by the application of a four-dimensional quaternion
orientational order parameter. As a generalization of the superfluid/Mott-insulator quantum phase
transition (QPT) in two- and one-dimensions, a critical point is anticipated for quaternion ordered
systems that exist in four- or three-dimensions which has been identified with the “ideal glass transition”
that occurs at the finite Kauzmann temperature. The first-order nature of the Kauzmann critical point,
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at which the Kauzmann entropy paradox may be realized, has been identified as a result of the discrete
change in the topology of the ground state manifold that applies to crystalline and non-crystalline
solid states. Just as in the case of the superfluid/Mott-insulator QPT, it is anticipated that the ground
state manifold becomes modified due to characteristic softening of the amplitude mode (‘Higgs’) on
approaching the Kauzmann critical point from the limit of a perfect crystal.
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