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Abstract: The increasingly sophisticated investigations of complex systems require more robust 
estimates of the correlations between the measured quantities. The traditional Pearson Correlation 
Coefficient is easy to calculate but is sensitive only to linear correlations. The total influence between 
quantities is therefore often expressed in terms of the Mutual Information, which takes into account 
also the nonlinear effects but is not normalised. To compare data from different experiments, the 
Information Quality Ratio is therefore in many cases of easier interpretation. On the other hand, 
both Mutual Information and Information Quality Ratio are always positive and therefore cannot 
provide information about the sign of the influence between quantities. Moreover, they require an 
accurate determination of the probability distribution functions of the variables involved. Since the 
quality and amount of data available is not always sufficient to grant an accurate estimation of the 
probability distribution functions, it has been investigated whether neural computational tools can 
help and complement the aforementioned indicators. Specific encoders and autoencoders have been 
developed for the task of determining the total correlation between quantities related by a functional 
dependence, including information about the sign of their mutual influence. Both their accuracy 
and computational efficiencies have been addressed in detail, with extensive numerical tests using 
synthetic data. A careful analysis of the robustness against noise has also been performed. The 
neural computational tools typically outperform the traditional indicators in practically every 
respect.  

Keywords: Machine Learning Tools; Information Theory; Information Quality Ratio; Total 
Correlations; Encoders; Autoencoders. 

 

1. Quantifying the Influence Between Variables 

Causality is an essential element of human cognition and it is typically the final goal of most 
scientific enterprises. Correlation is not necessarily the same as causality but assumes nonetheless 
great importance in itself or as a prerequisite to determining causal influences between quantities.  
Therefore quantifying accurately the correlation between variables remains an important task in a 
wide range of intellectual disciplines. On the other hand, particularly when analysing cross-sectional 
data, even the preliminary stage of determining the correlation between quantities can become a very 
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challenging task. This is particularly true in the investigation of complex systems in presence of 
overwhelming amounts of data. Modern scientific experiments are meant to provide information 
about every day more complex phenomena. They can also produce very large amounts of data. JET 
has the potential of producing 1 Terabyte of data per day, while ATLAS can generate more than 10 
Petabytes of data per year [1]. 

Given this data deluge, the need to assess accurately the relation between the various measured 
quantities has become more pressing. The probability that important information remains hidden in 
the large data warehouses is indeed very high. The other main risk resides in the possible wrong 
evaluation of the influence between variables, which could lead to significant blunders [2]. 

The most widely used tools to determine the relation between variables present some significant 
limitations; they either detect only the linear correlations or require large amounts of data and do not 
provide any hint about the directionality of the influence (see Section 2). In this contribution, it is 
explored to what extent specific neural networks can help in at least alleviating some of these 
insufficiencies. The developed tools, introduced in Section 3, are aimed at determining the influence 
between quantities linked by a functional relation, typically non-linear, in the case of multivariate 
problems and in presence of significant noise. A comprehensive series of numerical tests with 
synthetic data has been performed. The results are reported in Section 4 for the liner correlations. The 
potential of the developed techniques to quantify total correlations are discussed in Section 5 for the 
case of a single regressor, including a detailed analysis of the effects of the noise.  The application of 
the tools to multivariate problems is investigated in Section 6. Conclusions and lines of future 
investigation are the subject of the last section of the paper. 

2. Correlation and Mutual Information Between Variables 

A very common and computationally efficient indicator, to quantify the linear correlations 
between variables, is the Pearson correlation coefficient (PCC). The PCC has been conceived to 
determine the bivariate correlations between two quantities in the available data sets. The definition 
of the PCC, traditionally indicated by the Greek letter ρ, is: 𝜌 , = ( , ), (1)

where cov is the covariance and σ indicates the standard deviation of the variables. In the notation 
adopted in this paper, the variable Y is the dependent variable and X are the regressors. 

The main drawback of the PCC resides in the fact that it takes into account only the linear 
correlations. In the case of investigations involving highly nonlinear phenomena, as it is often the 
case in the science of complex systems, the conclusions, obtained from the analysis of the PCC, can 
therefore be highly misleading. To overcome this limitation, unbiased techniques for non-linear 
analysis are required. Information theory provides a very powerful tool to investigate the information 
transfer between quantities, the so-called Mutual Information [3]. This indicator can be considered a 
measure of the mutual dependence between two random variables X and Y; it quantifies the amount 
of information that can be obtained about one random variable from knowing a second random 
variable and includes nonlinear effects. The traditional symbol for the Mutual Information is I(X,Y), 
which for discrete variables is defined as: 𝐼(𝑋, 𝑌) = − ∑ ∑ 𝑃(𝑥, 𝑦) ln ( , )( ) ( ) , (2)

where P() indicates the probability density function (pdf) of the variables in the brackets. 
Unfortunately, the mutual information is not a normalised quantity. On the other hand, it can be 
rescaled to the interval [0–1], by dividing it for the joint entropy H(X,Y) defined as: 𝐻(𝑋, 𝑌) = − ∑ ∑ 𝑃(𝑥, 𝑦) ln 𝑃(𝑥, 𝑦), (3)

In the literature, this new normalised quantity is called the Information Quality Ratio (IQR) [3]: 𝐼𝑄𝑅 = ( , )( , ), (4)
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The Information Quality Ratio is a well consolidated quantity but, as can be seen from Equations 
(2) and (3), the estimation of the IQR requires the calculation of the probability density functions of 
the variables involved. This aspect renders the analysis more demanding, compared to the PCC, both 
in terms of efforts and requirements about the quality of the data. Fortunately, nowadays there are 
quite powerful tools to obtain the pdfs from the histograms of experimental data. The techniques 
used in this paper belong to the family of the “Kernel Density Estimation” KDE [4], which have been 
deployed also in [5–9] for the analysis of experimental data from Big Physics experiments, using the 
methodology described in [10,11]. The outputs of these KDE tools can be considered consolidated at 
this stage. However, density estimation remains a delicate operation. Moreover, the IQR is always a 
positive quantity and therefore does not shed any light about the directionality of the information 
transfer and therefore of the influence between the considered quantities. 

Given the previous considerations, it is reasonable to ask whether neural computation can help 
overcoming, or at least alleviating, the aforementioned limitations of PCC and IQR. In this 
perspective, in the framework of deep learning for image processing, many neural network 
topologies, such as encoders and autoencoders, have been recently extensively tested (see next 
section for a description of these networks); their properties could in principle be useful also in the 
analysis of the correlation between quantities [12]. In particular, it is worth assessing to what extent 
encoders and autoencoders can provide information about the total correlations between quantities, 
including directionality, and whether they can be more computationally efficient than information 
theoretical indicators based on density estimators. 

3. The Technology of Autoencoders and Encoders for the Assessment of Correlations 

Autoencoders are feed forward neural networks with a specific type of topology, reported in 
Figure 1. The defining characteristic of autoencoders is the fact that the output is the same as the input 
[12]. They are meant to compress the input into a lower-dimensional code and then to reconstruct the 
output from this representation. To this end, an autoencoder consists of 3 components: encoder, code 
and decoder. The encoder compresses the input and produces the code, a more compact 
representation of the inputs. The decoder then reconstructs the input using this code only. The code 
constitutes a compact “summary” or “compression” of the input, which is also called the latent-space 
representation. 

 
Figure 1. General topology of autoencoders. 

In more detail, the input passes first through the encoder, which is a fully connected artificial 
Neural Network (ANN), and is translated into a code. The code is the input of the decoder, which is 
meant to produce an output, which is a similar as possible to the input. The decoder architecture is 
typically the mirror image of the encoder. Even if this condition is not an absolute requirement, it is 
typically the case (the actual indispensable requirement is that the dimensionality of the input and 
output is the same). Autoencoders can be trained via backpropagation as traditional ANNs. 

Overall there are four hyperparameters that need to be to set before starting the training of an 
autoencoder: (1) code size i.e. the number of nodes in the middle layer (2) the number of layers (3) 
the number of nodes per layer (4) the loss function. All these hyperparameters have to be set to 
optimize the autoencoders for the present application, i.e., the assessment of the total correlation 
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between variables (inputs). To this end, a stacked autoencoder architecture has been adopted: the 
layers are stacked one after another. The actual architecture of the autoencoders implemented to 
obtain he results discussed in the next sections is reported in Figure 2. For the investigations reported 
in this paper, linear activation functions have been implemented. 

 
Figure 2. Architecture of the autoencoders used in the present work with the matrixes that multiplied 
give W. The case shown in the figure is particularised for a latent space of dimension 2. 

The architecture of the autoencoders is well suited to the determination of the total correlation 
between quantities. Another important type of correlation is the one between regressors and 
dependent variables. This is the case of regression, a very relevant application for both scientific and 
engineering studies. For this type of study, the topology of the so-called encoders is sufficient. 
Encoders can be thought of as just the first part of the autoencoder (see Figure 1) with the code of the 
same dimensionality as the dependent variable space. 

The basic elements of the proposed method, to obtain the correlations (linear or total), consists 
of adopting the architecture of Figure 2 (or of the simple encoder for the case of regression) and then 
of reducing the neurons in the intermediate layer until the autoencoder does not manage to reproduce 
the outputs properly (starting with a number of neurons equal to the number of inputs). After 
identifying the dimensionality of the latent space, the minimum number of neurons in the 
intermediate layer, for which the inputs are properly reconstructed at the output, a specific 
manipulation of the weights allows obtaining the required information. The operations of the weights 
differ depending on whether the linear or nonlinear correlations are investigated and therefore the 
details are provided in the next sections. 

4. The Technology of Autoencoders and Encoders for the Assessment of Linear Correlations 

Even if the main objective of the work consists of finding an alternative method to quantify the 
total correlations between quantities, a first analysis of the linear correlations is worth the effort. Being 
able to reproduce the PCC is useful to grasp the main elements of the approach and also to increase 
the confidence in the results. On the other hand, the PCC can be strongly affected by the noise present 
in the data; assessing whether neural computational tools can help in this respect is therefore quite 
valuable, particularly for scientific applications such as thermonuclear plasmas, whose 
measurements present quite high levels of uncertainties. 

To fix the ideas, let’s consider two examples involving three variables x1, x2 and x3.  In the first 
case the correlation between the first two variables is of value unity (x2 = cost x1); in the second case 
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the correlation is reduced to 0.8 by the presence of random noise (x2 = cost x1 + random), whose standard 
deviation is 20% of the actual signal standard deviation. In both examples the dimensionality of the 
latent space is 2. The matrix of the weights of the autoencoders can be expressed in matrix form as: 

𝑾 = 𝑊 , 𝑊 , 𝑊 ,𝑊 , 𝑊 , 𝑊 ,𝑊 , 𝑊 , 𝑊 , , (5)

The derivation of the matrix Λ for this specific case of dimensionality 2 is reported in Figure 2. 
Extension to latent spaces of higher dimensionality is straightforward. To obtain normalized 
coefficients, so that the correlation coefficient of a variable with itself is 1, it is necessary to define e 
new matrix Λ, whose coefficients are: 𝛬 , = , ,, , , (6)

The tables reported in Figure 3 provide a comparison of the correlation coefficients calculated 
with the PCC and with the proposed method of the autoencoders. As can be concluded by simple 
inspection of the numerical values in these tables, the proposed technique manages to exactly 
reproduce the PCC estimates in the case of absence of noise. When applied to noisy entries, the 
autoencoder provide a better estimate of the expected off diagonal correlation coefficients, in the 
sense that they are closer to 1, the original correlation between the variables before adding the noise. 
This is an interesting point, which will be analysed more extensively at the end of this section. 

  
Figure 3. Comparison of correlation coefficients for the two examples described in the text. Case 1: no 
noise. Case 2: Gaussian noise with standard deviation 20% of the actual signal standard deviation. 

A series of numerical tests has been performed to prove the generality of the conclusions 
obtained for simple cases. For examples, it has been verified that the approach remains valid for 
problems of larger dimensionality. An example of 10 variables is reported in the following. A set of 
10 different variables have been generated: x1, x2, x3, x4, x5, x6, x7 are independent from each other. The 
remaining variables have been generated with the relations: x8 = cost1 x1; x9 = cost2 x2; x10 = cost3 x3. 

 
Figure 4. Trend of the errors in the reconstruction of the input data with the dimensionality of the 
intermediate layer in the autoencoder. 
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As can be seen in the plots of Figure 4, the autoencoder manages to clearly identify the 
dimensions of the latent space. The minimum number of neurons in the intermediate layer for, which 
the autoencoder manages to reproduce the inputs with minimal errors, is 7. The matrix Λ of the 
correlation coefficients reproduces also exactly the one obtained with the application of the PCC, as 
shown in Figure 5. 

 
Figure 5. Left: the PCC for a set of 10 variables correlated as specified in the text. Right: the correlation 
coefficients obtained with the proposed method of the autoencoders. 

Systematic tests have also been performed to assess the robustness of the proposed approach to 
additive noise. Gaussian noise of various amplitude has been added to the variables. It is important 
to notice that the method based on the autoencoders has proved more resilient that the traditional 
PCC. In general, for linear correlations, the Pearson coefficient start declining for the standard 
deviation of the noise of the order of 20% of the signal amplitude, whereas the matrix Λ remains 
stable up to even 60% of additive noise. A typical dependence of the off-diagonal terms of the matrix 
Λ and the traditional PCC, versus the percentage of noise, is shown in the plots of Figure 6. Of course 
the better robustness of the networks becomes important when multivariate linear correlations have 
to be analysed, since in those cases it is not obvious how the separate the influence of other quantities 
from the effects of the noise. 

 

Figure 6. Trend of the off-diagonal term of the matrix Λ and the PCC versus the percentage of additive 
Gaussian noise. The noise intensity is calculated as the standard deviation of the noise divided by the 
standard deviation of the variable amplitude. 

In the case of regression, when the objective consists of finding the correlation between one 
dependent variable and a series of regressors, the analysis must be performed in two uncorrelated 

Pearson
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 1.00 0.00 -0.02 0.01 0.03 0.00 0.00 1.00 0.00 -0.02

x2 0.00 1.00 0.00 0.02 0.00 0.00 0.00 0.00 1.00 0.00

x3 -0.02 0.00 1.00 0.00 -0.01 0.00 0.01 -0.02 0.00 1.00

x4 0.01 0.02 0.00 1.00 0.00 -0.02 0.01 0.01 0.02 0.00

x5 0.03 0.00 -0.01 0.00 1.00 -0.01 0.00 0.03 0.00 -0.01

x6 0.00 0.00 0.00 -0.02 -0.01 1.00 -0.01 0.00 0.00 0.00

x7 0.00 0.00 0.01 0.01 0.00 -0.01 1.00 0.00 0.00 0.01

x8 1.00 0.00 -0.02 0.01 0.03 0.00 0.00 1.00 0.00 -0.02

x9 0.00 1.00 0.00 0.02 0.00 0.00 0.00 0.00 1.00 0.00

x10 -0.02 0.00 1.00 0.00 -0.01 0.00 0.01 -0.02 0.00 1.00
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steps. The linear correlations between the regressors can be determined as just described previously 
in this section. Then the linear correlation between the dependent variable and each of the regressors 
has to be determined directly with a specific network, completely independent from the previous 
one. The reason why the analysis cannot be performed in a single step, using one single network, is 
that the dependent variables creates spurious influences between the regressors, which are not the 
desired output of the analysis. As a simple case, just to exemplify the problem, let us assume that 
both x1 and x2 influence y. The neural tools have no way to distinguish between the dependent 
variable and the regressors. Therefore, the encoder may find also a correlation between x1 and x2, 
trough y, even if x1 and x2 are completely independent. The two-step approach is the only simple and 
effective solution found so far. The output for a representative case with the functional dependence 
y = −3x1 + 4x2 is reported in Table 1. 

Table 1. Comparison of the linear correlations for the equation y = −3x1 + 4x2 obtained with the PCC 
and the neural computation tools. The variable x3 has been randomly generated and has no correlation 
zero with the other two. 

 x1 x2 x3 y 
Pearson −0.60 0.80 0.00 1.00 
Ρnetworks −0.59 0.80 0.08 1.00 

5. Numerical Tests for Total Correlations: The Bivariate Case 

The quantification of the total correlation between measurements poses some additional 
problems. First of all, if the influence between the quantities under investigation includes nonlinear 
effects, the level of correlation depends on the range of the variables themselves. A simple example 
is a parabolic dependence, which is not only constant but whose sign also depends on the range of 
the variables. To address this issue, the procedure devised for assessing the linear correlations with 
the autoencoders has to be modified as follows. The determination of the latent space is the same. 
Once this step is completed, it is necessary to subdivide the range of the variables in sufficiently small 
intervals; on every one of these intervals the local correlation coefficient between the quantities of 
interest can be calculated as described in the previous section. The integral of these local correlation 
coefficients is the integral correlation indicated with ρint: 𝜌 = ∆ ∫|𝜌(𝑥)|𝑑𝑥, (7)

Of course, as the IQR, this indicator does not provide any information about the sign of the 
correlation. To quantify this aspect, a good indicator is the monotonicity of the correlation, which can 
be defined as: 𝑀 = ∆ ∫ 𝑠𝑖𝑔𝑛 𝜌(𝑥) 𝑑𝑥, (8)

To exemplify the potential of the proposed approach, Figure 7 reports the local correlation 
coefficient for a linear, a quadratic and a cubic dependence. For the first case, as expected for a linear 
dependence, both the integral correlation coefficient and the monotonicity have a value of one. For 
the quadratic case, the ρint is again practically unitary, whereas the monotonicity is almost zero. In 
the cubic case the ρint is again unity and the monotonicity −1. Of course, for these nonlinear 
dependencies, the PCC fairs quite poorly; it is practically zero for the quadratic case and about −0.9 
for the cubic function. 
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Figure 7. Top: two linearly dependent variables (left) and the relative local correlation coefficient ρint 
(right). Middle: two quadratic dependent variables (left) and the relative local correlation coefficient 
ρint (right). Bottom: two variables with a cubic negative dependence (left) and the relative local 
correlation coefficient ρ (right). The integral values of the correlation coefficient and of the 
monotonicity are reported in the inserts. 

The combination of the integrated correlation coefficient and the monotonicity is therefore much 
more informative than the simple IQR. The ρint represents very well the actual dependence between 
the variables. Moreover, the monotonicity provide information about the direction and the constancy 
of the mutual influence; negative signs of the monotonicity indicate an inverse dependence and low 
values the fact that the mutual dependence changes sign over the domain of the variables. 

In terms of comparison with the IQR, Figures 8 summarizes a typical trend with the number of 
bins and the number of the entries in the database. As can be conclude from simple inspection of the 
plot, ρint provides a much better estimate of the correlation level between the independent and 
dependent variables (the actual value in the synthetic data is 1). The integrated correlation coefficient 
is also much more robust against the choice of the bins and the number of entries, two factors which 
affect a lot the IQR that is based on the details of the pdf.  
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Figure 8. Comparison of the ρint and the IQR for the negative cubic dependence (third case of Figure 
7). The x axis reports the number of bins and N is the number of generated points used to calculate 
the indicators. 

Also, for the total correlation of bivariate dependencies, a careful analysis of the noise effects has 
been carried out. In this case, the situation is a bit more involved than for the linear correlations. In 
particular, the effect of the noise on ρint does not depend only on its amplitude but also on the choice 
of the bins for the determination of the pdfs and the integral correlation. Representative examples, 
showing the trends with noise amplitude and choice of the bins, are reported in Figure 9. The plots 
of this figure refer to Gaussian noise of amplitude proportional to the signal amplitude; as usual the 
noise intensity is expressed as the standard deviation of the noise divided by the standard deviation 
of the variable amplitude. 

 
Figure 9. Effects of the noise amplitude on ρint for various choices of the number of bins. Left plot: the 
investigated dependence is y = x2. Right plot: the investigated dependence is y = x3. The independent 
variable x varies in the range [−10; 10] and the number of points is 105. The noise intensity is calculated 
as the standard deviation of the noise divided by the standard deviation of the variable amplitude. 

As can be derived from inspection of Figure 9, the choice of the bins is crucial. It is indeed 
important that a sufficient number of points are included in each bin, so that the detrimental effects 
of the noise can be averaged out by the statistics. So, a sufficiently low number of bins is to be 
preferred, compatibly with the need to properly resolve the variations in ρint. If the number of data is 
not sufficient but the properties of the noise are known, it has been verified that bootstrapping can 
be usefully implemented to obtain reasonable values of ρint. The oscillations in the value of ρint for the 
quadratic dependence are a consequence of the switch between an even and odd number of bins. In 
the case of an even number of bins, the central one is centred around zero and therefore gives a null 
correlation, reducing the total value of ρint compared to the case of odd bins. Again, this is a problem, 
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which can be easily alleviated by bootstrapping. It is also worth mentioning that, contrary to ρint, the 
monotonicity is extremely robust against both the choice of the bins and the level of the noise (even 
in the range of 10–20% of the signal amplitude). Moreover, it has been checked that Mint gives 
practically the same results as Kendall’s correlation coefficient, an indicator traditionally used for the 
same purpose [13,14]; the monotonicity criterion proposed in this paper is even less sensitive to noise, 
a quite interesting property given the well-known robustness of Kendall’s correlation coefficient. 

6. Numerical Tests for Total Correlations: The Multivariate Case 

Conceptually the extension of the methodology, presented in the previous section, to the 
investigation of multivariate problems does not pose any principle difficulty. Equation (7) and (8) can 
be generalized easily to obtain: 𝜌_𝑖𝑛𝑡 = 1/(∆𝑥_1 ∆𝑥_2 … ∆𝑥_𝑁 ) ∫ ▒〖|𝜌(𝑥_1, 𝑥_2, … , 𝑥_𝑁 )|𝑑𝑥_1 𝑑𝑥_2 … 𝑑𝑥_𝑁 〗        (9) 𝑀_𝑖𝑛𝑡 = 1/(∆𝑥_1 ∆𝑥_2 … ∆𝑥_𝑁 ) ∫ ▒〖𝑠𝑖𝑔𝑛(𝜌(𝑥_1, 𝑥_2, … , 𝑥_𝑁 ))𝑑𝑥_1 𝑑𝑥_2 … 𝑑𝑥_𝑁 〗     (10) 

Again, the only precaution is that, in the case of regression, the analysis must be performed in 
two steps as for the investigation of the linear multivariate correlations. The reason is also the same, 
i.e. the need to avoid spurious influences between the regressors introduced by the dependent 
variable. To show the potential of the method, the results of a representative example are reported in 
Table 2 and Table 3. The functional dependence used to generate the synthetic data is: 𝑦 = 3𝑥 − 𝑥 . 
The range of the xi is [−10; 10] and the number of points 105. 

Table 2. Total correlations between the regressors for the functional dependence 𝑦 = 3𝑥 − 𝑥 . 

 x1 x2 x3 
x1 1.00 0.05 0.03 
x2 0.02 1.00 0.01 
x3 0.02 0.03 1.00 

Table 3. Total correlations between the output and the regressors for the functional dependence 𝑦 =3𝑥 − 𝑥 . 

 x1 x2 x3 y 
ρint 0.46 0.75 0.08 1.00 
M 0.02 -0.96 0.01 1.00 

With regard to the competitive advantages of the neural computational tools, they remain the 
same as the ones discussed for the univariate cases. 

7. Conclusions 

An approach to the identification of the mutual influence between variables, using neural 
computational tools, has been proposed. The developed techniques have been validated with a series 
of systematic tests with synthetic data. The use of autoencoders and encoders has provided very 
interesting results. For the determination of the linear correlations between quantities, the proposed 
method provides the same values as the PCC but it is significantly more robust against the effects of 
additive random noise. To investigate the total correlations between quantities, the combined used 
of the integrated correlation coefficient and the monotonicity has proved to be much more 
informative than the IQR. The ρint reflects quite well the actual dependence between quantities. The 
monotonicity provides very valuable information about the constancy of the mutual influence over 
the investigated domain. The ρint is also less sensitive to the details of parameters, mainly the number 
of bins, required to calculate IQR. The ρint is also less demanding in terms of quantity and quality of 
the data required, to provide reliable estimates of the mutual influence between quantities. Indeed 
all the numerical tests performed reveal that ρint is more robust against noise and, other things being 
equals, that it requires fewer entries to converge on accurate results. 
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With regard to future developments, the main issue to investigate is the requirement in terms of 
data quality and volume for the case of multivariate nonlinear dependencies, once the number of 
regressors is very high (of the order of 10 or more). On a longer time perspective, it is intended to 
explore the potential of the proposed neural networks to address more complex situations, such as 
the existence of data clusters, general (non-functional) constraints in specific regions of the domain 
and more complex noise models than unimodal/Gaussian. 

Author Contributions: Formal analysis, A.M., R.R. and M.L.; Investigation, A.M.; Methodology, R.R. and M.L.; 
Supervision, A.M., P.G. and M.G.; Writing – original draft, A.M. 
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