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Abstract: In the previous work, the author gave the following symplectic/contact geometric
description of the Bayesian inference of normal means: The space H of normal distributions is an
upper halfplane which admits two operations, namely, the convolution product and the normalized
pointwise product of two probability density functions. There is a diffeomorphism F of H that
interchanges these operations as well as sends any e-geodesic to an e-geodesic. The product of two
copies of H carries positive and negative symplectic structures and a bi-contact hypersurface N.
The graph of F is Lagrangian with respect to the negative symplectic structure. It is contained in
the bi-contact hypersurface N. Further, it is preserved under a bi-contact Hamiltonian flow with
respect to a single function. Then the restriction of the flow to the graph of F presents the inference
of means. The author showed that this also works for the Student t-inference of smoothly moving
means and enables us to consider the smoothness of data smoothing. In this presentation, the space
of multivariate normal distributions is foliated by means of the Cholesky decomposition of the
covariance matrix. This provides a pair of regular Poisson structures, and generalizes the above
symplectic/contact description to the multivariate case. The most of the ideas presented here have
been described at length in a later article of the author.

Keywords: information geometry; Poisson structure; symplectic structure; contact structure; foliation;
Cholesky decomposition

1. Introduction

We work in the C∞-smooth category. A manifold U embedded in the space of probability
distributions inherits a separating premetric D : U ×U → R≥0 from the relative entropy, which is
called the Kullback–Leibler divergence. The geometry of (U, D) is studied in the information theory.
The information geometry [1] concerns the infinitesimal behavior of D. In the case where U is the
space of univariate normal distributions, we regard U as the half plane H = R×R>0 3 (m, s), where
m denotes the mean and s the standard deviation. Since the convolution of two normal densities is a
normal density, it induces a product ∗ on H, which we call the convolution product. On the other hand,
since the pointwise product of two normal densities is proportional to a normal density, it induces
another product · on H, which we call the Bayesian product. The first half of this presentation is
devoted to the geometric description of Bayesian statistics including this product.

On the other hand, the current statistics lies not only in probability theory, but also in information
theory. The author [2] found a symplectic description of the statistics of univariate normal distributions
which is simultaneously based on these theories. Precisely, on the product H×H with coordinates
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(m, s, M, S), we take the positive and negative symplectic forms dλ± with the fixed primitives λ± =
dm
s
± dM

S
. Then the Lagrangian surfaces

Fε =

{
(m, s, M, S) ∈ H×H

∣∣∣ m
s
+

M− ε

S
= 0, sS = 1

}
(ε ∈ R)

with respect to dλ− foliate the hypersurface N = {sS = 1}. For each ε ∈ R, the leaf Fε is the graph of a
diffeomorphism of H which sends any geodesic to a geodesic with respect to the e-connection. Further,
in the case where ε = 0, the diffeomorphism interchanges the products ∗ and ·, namely,{

(m, s, M, S ) ∈ F0

(m′, s′, M′, S′) ∈ F0
⇒

{
((m, s) ∗ (m′, s′), (M, S) · (M′, S′)) ∈ F0

((m, s) · (m′, s′), (M, S) ∗ (M′, S′)) ∈ F0.

Thus, the iteration of ∗ in the first factor of H×H corresponds to that of · in the second factor.
The primitives λ±, the hypersurface N, the foliation {Fε}ε∈R and the leaf F0 are preserved under the
diffeomorphism ϕζ : (m, s, M, S) 7→ (ζm, ζs, ζ−1M, ζ−1S) for any ζ ∈ R>0. This map appears in the
construction of Hilbert modular cusps by Hirzebruch [3]. Further the function f : H×H → R≥0

which is defined by f (m, s, M, S) = D(m, s, m′, s′) for (m′, s′, M, S) ∈ F0 is also preserved under ϕζ .
On the other hand, the hypersurface N inherits the mutually transverse pair of the contact structures
ker(λ±|N), which we call the bi-contact structure. Let X be the contact Hamiltonian vector field of
λ+|N with respect to the function

m
s

, i.e., the unique contact vector field satisfying λ+|N(X) =
m
s

.

Then X is also the contact Hamiltonian vector field of λ−|N with respect to the same function
m
s

.
We call such a vector field a bi-contact Hamiltonian vector field. There is a non-trivial bi-contact
Hamiltonian vector field on (N, λ±) which is tangent to the leaf F0. It is the one for the above function
m
s

up to constant multiple. We may regard its restriction to F0 as a vector field on the second factor of
H×H since F0 is the graph of a diffeomorphism. Surprisingly, this vector field is tangent to a foliation
by e-geodesics, and each leaf is closed under the Bayesian product. Further, the author [4] showed that
a similar vector field on the squared space of Student’s t-distributions can provide an indication of
“geometric smoothness” in actual data smoothing.

In the second half of this presentation, we generalize the above description to the multivariate
case. It is straightforward except that we use the Cholesky decomposition to foliate the squared space
of n-variate normal distributions. Here the leaves are 4n-dimensional submanifolds carrying two
symplectic structures. They form a pair of Poisson structures on the squared space.

This short paper provides the calculation results and sketches the mathematical ideas. For the
precise descriptions and the proofs, see the article [5] by the author.

2. Results

2.1. Bayesian Information Geometry

In this subsection, we generalize the setting of the information geometry. Take a smooth family
of volume forms with finite total volumes on Rn. We regard each of the volume forms as a point of a
manifoldM, namely, a point y ∈ M presents a volume form ρydVol smoothly depending on y. Let V
be the space of volume forms with finite total volumes onM. We take a volume form V in V . Given a
point z on Rn, we regard the value ρy(z) of the density as a function ρ(z) : y 7→ ρy(z), and multiply
the volume form V by the function ρ(z). This defines the updating map

ϕ : Rn × V 3 (z, V) 7→ ρ(z)V ∈ V . (1)

We notice that a volume form with finite total volume is proportional to a probability measure.
Thus the function ρ(z) is proportional to the likelihood, and System (1) presents Bayes’ rule.
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A proper subset Ũ ⊂ V is called a (generalized) conjugate prior if it satisfies

ϕ(Rn × Ũ ) ⊂ Ũ . (2)

Suppose that we have a conjugate prior Ũ which is a smooth manifold, and further that, by using
the hypersurface U = {V ∈ Ũ |

∫
Rn V = 1}, it can be written as Ũ = {kV | V ∈ U , k > 0}. We define

on Ũ the following “distance” D̃, which satisfies non of the axioms of distance.

D̃(V1, V2) =
∫
Rn

V1 ln
V2

V1
(the relative entropy) (3)

Note that the restriction D̃|U×U = D satisfies the separation axiom, and is called the
Kullback–Leibler divergence. We have to fix the coordinate in the k-direction which presents the
time. Then we write the quadratic term of the Taylor expansion of D̃(P, P + dP) + D̃(P + dP, P) as
∑i,j g̃ijdPidPj, where g̃ij = g̃ji. Suppose that g̃ = [g̃ij] is a metric on Ũ . Let ∇̃0 be the Levi-Civita
connection with respect to g̃. We write the cubic term of the expansion of 3D̃(P, P + dP)− 3D̃(P +

dP, P) symmetrically as ∑i,j,k T̃ijkdPidPjdPk. This defines the line of (generalized) α-connections
∇̃α = ∇̃0 − αg̃∗T̃ with affine parameter α ∈ R, where g̃∗T denotes the contraction ∑l g̃kl T̃ijl by
the contravariant metric g−1 = [gij]. Note that ∇̃α has no torsion. Restricting all of the above notions
with tilde to the hypersurface U ⊂ Ũ , we obtain the notions without tilde in the usual information
geometry [1]. Here U can be identified with a space U of probability distributions.

2.2. The Geometry of Normal Distributions

In this subsection we consider the space U of multivariate normal distributions. The pair of a
vector µ = (µi)1≤i≤n ∈ Rn and an upper triangular matrix C = [cij]1≤i,j≤n ∈ Mat(n,R) with positive
diagonal entries determines an n-variate normal distribution by declaring that µ presents the mean
and CTC the Cholesky decomposition of the covariance matrix. We put

σi = cii and rij =
cij

cii
(i, j ∈ {1, . . . , n}), i.e., C = diag(σ)[rij].

Note that [rij] is unitriangular, i.e., it is a triangular matrix whose diagonal entries are all 1.
Considering σ ∈ Rn and r = (rij)1≤i<j≤n ∈ Rn(n−1)/2 as parameters, we can write the probability
density of the n-variate normal distribution at P = (µ, σ, r) ∈ U = Rn × (R>0)

n ×Rn(n−1)/2 as

p(x) =
1√

(2π)n|σ|
exp

(
−1

2

∥∥∥C(σ, r)−T(x− µ)
∥∥∥2
)

(x ∈ Rn).

Then the relative entropy defines the premetric

D(P, Q = (µ′, σ′, r′)) =

∥∥C(σ′, r′)−T(µ′ − µ)
∥∥2

2

+
‖C(σ, r)C(σ′, r′)−1‖2 − n

2
−

n

∑
i=1

ln
σi
σ′i

,

where ‖ · ‖2 denotes the sum of squares (i.e., ‖ · ‖ the Frobenius norm). Thus,

D(P + ∆P, P) =

∥∥C−T∆µ
∥∥2

2

+

∥∥∆CC−1
∥∥2

2
+ tr(∆CC−1)− ln

∣∣∣1n + ∆CC−1
∣∣∣ ,
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where 1n is the unit, and ∆C the difference C(σ + ∆σ, r + ∆r)− C(σ, r). Let rij be the entries of the
inverse matrix of [rij]. Then we have

(the ij-entry of ∆CC−1) =



∆σi
σi

(i = j)

σi + ∆σi
σj

j

∑
k=i+1

rkj∆rik (i < j)

0 (i > j)

.

The Fisher information g appears in D(P + dP, P) as the quadratic form

g =
n

∑
k=1

(
1
σk

k

∑
i=1

rikdµi

)2

+ 2
n

∑
i=1

(
dσi
σi

)2
+

n−1

∑
l=1

n

∑
k=l+1

(
σl
σk

k

∑
i=l+1

rikdrli

)2

,

which is presented by a block diagonal diag(gµµ, gσσ, grr,2, . . . , grr,n), where

gµµ

(
=
[

gµi ,µj

])
=

[
∑

k≥i,j

rikrjk

σk
2

]
= C−1C−T, gσσ = diag

((
2

σi
2

))
,

and grr,l =
[

grlirl j

]
i,j>l

=
[
σl

2gµi ,µj

]
i,j>l

(l = 1, . . . , n − 1). Lowering the upper indices of the

α-connection by ∑
L

gKLΓα
I J

K = Γα
{I,J},K, we have

Γ0
{µi ,µj},σk

= −Γ0
{µi ,σk},µj

=
rikrjk

σk
3 ,

Γ0
{σi ,σi},σi

=
−2
σi

3 ,

Γ0
{µi ,µj},rab

= −Γ0
{µi ,rab},µj

=
n

∑
k=b

rbk(riarjk + rikrja)

2σk
2 ,

Γ0
{rli ,rl j},σl

= −Γ0
{rli ,σl},rl j

= ∑
k≥i,j

−σlrikrjk

σk
2 ,

Γ0
{rli ,rl j},σk

= −Γ0
{rli ,σk},rl j

=
σl

2rikrjk

σk
3 (k ≥ i, j),

Γ0
{rli ,rl j},rab

= −Γ0
{rli ,rab},rl j

= σl
2Γ0
{µi ,µj},rab

(a > l),

Γ0
{I,J},K = 0 (for the other choices of {I, J} and K),
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and

Γ1
{µi ,σk},µj

= 2Γ0
{µi ,σk},µj

,

Γ1
{σi ,σi},σi

= 3Γ0
{σi ,σi},σi

,

Γ1
{µi ,rab},µj

= 2Γ0
{µi ,rab},µj

,

Γ1
{rli ,rlj

},σl
= 2Γ0

{rli ,rlj
},σl

,

Γ1
{rli ,σk},rlj

= 2Γ0
{rli ,σk},rlj

(k ≥ i, j),

Γ1
{rli ,rab},rl j

= 2Γ0
{rli ,rab},rl j

(a > l),

Γ1
{I,J},K = 0 (for the other choices of {I, J} and K),

and thus we also have

Γ(−1)
{µi ,µj},σk

= 2Γ0
{µi ,µj},σj

,

Γ(−1)
{σi ,σi},σi

= −Γ0
{σi ,σi},σi

,

Γ(−1)
{µi ,µj},rab

= 2Γ0
{µi ,µj},rab

,

Γ(−1)
{rli ,σl},rlj

= 2Γ0
{rli ,σl},rlj

,

Γ(−1)
{rli ,rlj

},σk
= 2Γ0

{rli ,rlj
},σk

(k ≥ i, j),

Γ(−1)
{rli ,rl j},rab

= 2Γ0
{rli ,rl j},rab

(a > l),

Γ(−1)
{I,J},K = 0 (for the other choices of {I, J} and K).

The coefficients for the e-connection all vanish with respect to the natural parameter θ =

(C−1C−Tµ, ξ), where ξ = (ξab)1≤a≤b≤n is the upper half of C−1C−T. Dually, the coefficients for the
m-connection all vanish with respect to the expectation parameter η = (µ, ν), where ν = (νab)1≤a≤b≤n
is the upper half of CTC + µµT. Now we fix the third component r of (µ, σ, r), and change the others.
We take the natural projection π : U = Hn ×Rn(n−1)/2 → Rn(n−1)/2 and modify the coordinates (µ, σ)

on the fiber L(r) = π−1(r) into (m, s) in the next proposition.

Proposition 1. The fiber L(r) = π−1(r) is an affine subspace of U with respect to the e-connection ∇1. It can

be parametrized by affine parameters
mi
si

2 and
1

si
2 , where m = [rij]Tµ and s =

√
2σ.

The fiber L(r) satisfies the following two properties.

Proposition 2. L(r) is closed under the convolution ∗ and the normalized pointwise product · between the
probability densities.

Proposition 3. The fiber L(r) with the induced metric from g admits a Kähler complex structure.

We write the restriction D|L(r) of the premetric D using the coordinates (m, s) as

D|L((m, s), (m′, s′)) =
1
2

n

∑
i=1

{(
m′i
s′i
− mi

s′i

)2

+
si

2

s′i
2 − 1− ln

si
2

s′i
2

}
.
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We take the product U1 ×U2 of two copies of the space U. Then the products L1(r)× L2(R) of
the fibers foliate U1 ×U2. We call this the primary foliation of U1 ×U2. For each (r, R) ∈ Rn(n−1), we
have the coordinate system (m, s, M, S) on the leaf L1(r)× L2(R). From the Kähler forms

ω1 = 2
n

∑
i=1

dmi ∧ dsi
si

2 and ω2 = 2
n

∑
i=1

dMi ∧ dSi

Si
2

respectively, on L1(r) and L2(R), we define the symplectic forms ω1 ± ω2 on L1(r)× L2(R). We fix
their primitive 1-forms

λ± = 2
n

∑
i=1

(
dmi
si
± dMi

Si

)
.

The symplectic structures on the primary foliation defines a pair of regular Poisson structures.
Now we take the 2n-dimensional submanifolds

Fε,δ =

{
mi
si

+
Mi − εi

Si
= 0, siSi = δi (i = 1, . . . , n)

}
of the leaf L1(r) × L2(R) for ε ∈ Rn and δ ∈ (R>0)

n. The secondary foliation of U1 × U2 foliates
any leaf U(r)×U(r) by the 3n-dimensional submanifolds Fε =

⋃
δ∈(R>0)n

Fε,δ for ε ∈ Rn. The tertiary

foliation of U1×U2 foliates all leaves Fε of the secondary foliation by the 2n-dimensional submanifolds
Fε,δ for δ ∈ (R>0)

n. We take the hypersurface

N =

{
(m, s, M, S) ∈ L1 × L2

∣∣∣∣∣ n

∏
i=1

(siSi) = 1

}
,

which inherits the contact forms α± = λ±|N . We can prove the following propositions.

Proposition 4. With respect to the Kähler form dλ−, the tertiary leaves Fε,δ are Lagrangian correspondences.

Proposition 5. For any ε and δ with
n

∏
i=1

δi = 1, Fε,δ ⊂ N is a disjoint union of n-dimensional submanifolds

{s = const} ⊂ Fε,δ which are integral submanifolds of the contact hyperplane distribution α+ on N.

For each point (ε, δ) ∈ Hn, we have the diffeomorphism F̂ε,δ : Hn → Hn sending (m′, s′) ∈ Hn to
(M, S) ∈ Hn with (m′, s′, M, S) ∈ Fε,δ. We put

fε,δ(m, s, M, S) =
1
2

n

∑
i=1

{(
Mi − εi

Si
+ e−hi

mi
si

)2
+ e−2hi − 1 + 2hi

}
,

where hi = − ln
siSi
δi

. Then we have

D|L((m, s), (m′, s′)) = fε,δ((m, s), F̂ε,δ(m′, s′)).

For any ζ ∈ (R>0)
2n, we define the diffeomorphism

ϕε,ζ : (m, s, M, S) 7→ (ζ2i−1mi), (ζ2i−1si), (εi + ζ2i(Mi − εi)), (ζ2iSi)),

which preserves the 1-forms λ±. It is easy to prove

Proposition 6. In the case where ζ2i−1ζ2i = 1 for i = 1, . . . , n, the diffeomorphism ϕε,ζ preserves fε,δ.
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For each ε ∈ Rn, we take the set fε = {( fε,δ, Fε,δ) | δ ∈ (R>0)
n}, and consider it as a structure of

the secondary leaf Fε. Then we can prove

Proposition 7. For any ζ ∈ (R>0)
n, the diffeomorphism ϕε,ζ preserves the set fε for any ε ∈ Rn. In the case

where ζ satisfies
n

∏
i=1

(ζ2i−1ζ2i) = 1, the diffeomorphism ϕε,ζ also preserves the hypersurface N.

Hereafter we fix ε = 0. For any δ ∈ (R>0)
n, the diffeomorphism F̂0,δ interchanges the operation

(m, s) ∗ (m′, s′) =
(

m + m′,
(√

si
2 + s′i

2
))

with the operation

(m, s) · (m′, s′) =

mis′i
2 + m′isi

2

si
2 + s′i

2 ,
sisi√

si
2 + s′i

2

 .

Namely,

Proposition 8. If (m, s, M, S), (m′, s′, M′, S′) ∈ F0,δ, then{
((m, s) · (m′, s′), (M, S) ∗ (M′, S′)) ∈ F0,δ

((m, s) ∗ (m′, s′), (M, S) · (M′, S′)) ∈ F0,δ
.

A curve (m(t), s(t)) ∈ Hn is a geodesic with respect to the e-connection ∇1 if and only if
mi
si

2 and

1
si

2 are affine functions of t for i = 1, . . . , n.

Definition 1. We say that an e-geodesic (m(t), s(t)) ∈ Hn is intensive if it admits an affine parametrization

such that
1

si
2 are linear for i = 1, . . . , n.

Note that any e-geodesic is intensive in the case where n = 1. We show

Proposition 9. Given an intensive e-geodesic (m(t), s(t)) ∈ Hn, we can parametrize its image

(M(t), S(t)) =
((

εi −
mi(t)δi

si
2

)
,
(

δi
si

))
under the diffeomorphism F̂ε,δ to obtain an intensive e-geodesic.

We have the hypersurface N =

{
n

∏
i=1

siSi = 1

}
⊂ Hn carrying the contact forms α± =

2
n

∑
i=1

(
dmi
si
± dMi

Si

) ∣∣∣
N

. We state the main result.

Theorem 1. The contact Hamiltonian vector field X of the restriction of the function
n

∑
i=1

mi
si

to the hypersurface

N on any leaf L1(r)× L2(R) ≈ H2n of the primary foliation of U1 ×U2 with respect to the contact form α+
on N coincides with that for the other contact form α−. The vector field X is tangent to the tertiary leaves Fε,δ
and defines flows on them. Here each flow line presents a correspondence between intensive e-geodesics as is
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described in Proposition 9. Particularly, for ε = 0 and any δ ∈ (R>0)
n, the flow on the leaf F0,δ presents the

iteration of the operation ∗ on the first factor of U ×U and that of the operation · on the second factor.

Finally, we consider the transverse unitriangular group. We have the orthonormal frame

eij =
σi
σj

n

∑
k=j

rjk∂rik (1 ≤ i < j ≤ n)

with the relations [eij, ekl ] = δilekj − δkjeil of the unitriangular algebra. Using the dual coframe eij, the

relations can be expressed as deij =
j−1

∑
k=i+1

eik ∧ ekj. The transverse section of the primary foliation of

U1 ×U2 is the product of two copies of the unitriangular Lie group, which we would like to call the
bi-unitriangular group. We fix the frame (resp. the coframe) of the transverse section consisting of
the above eij (resp. eij) in the first factor U1 and their copies Eij (resp. Eij) in the second factor U2.
The quotient manifold carries the (n− 2)-plectic structure

Ω =
n

∑
i=1

ei,i+1 ∧ · · · ∧ ei,n ∧ En−i+1,n−i+2 ∧ · · · ∧ En−i+1,n,

which satisfies dΩ = 0 and Ωn > 0. We notice that, in the symplectic case where n = 3, the quotient
manifold admits no Kähler structure (see [6]).

3. Discussion

It is remarkable that the transverse symplectic 6-manifold is naturally ignored in the Bayesian
inference on 3-dimensional normal prior. The author conjectures that a similar geometry of 3 +

1-dimensional relativistic prior has some relation to the M-theory. See [7] for a relation between
Poisson geometry and matrix theoretical and non-commutative geometrical physics.
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