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Abstract: Data collection plays an important role in pavement health monitoring, which is usually 
performed using costly devices, including point-based lasers and laser scanners. The main aim of 
this study measures pavement characteristics using an RGB-D sensor. By recording the depth and 
color images simultaneously, the sensor benefits the data fusion. By mounting the sensor on a 
moving cart, and fixing the vertical distance from the ground, data were collected along 100 m of 
the asphalt pavement using MATLAB. At each stop point, multiple frames were collected, the 
central region of interests was stored, and a low pass filter was subsequently applied to the data. To 
create a 3D surface of the pavement, sensor calibration was performed to map the RGB and depth 
infrared images. The SURF (speeded-up robust features) and MSAC (M-estimator sample 
consensus) algorithms were used to match the stitched images along the longitudinal profile. A case 
study of measuring roughness and rutting is applied to test the validity of the method. The result 
confirms that the proposed system is capable of measuring such indices with acceptable accuracy. 

Keywords: pavement health monitoring; RGB-D sensor; Kinect sensor; pavement data collection; 
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1. Introduction 

Due to the cost burden of evaluating the pavement condition in a network, there has been a lot 
of attention in using cost-effective health-monitoring methods. Roughness and rutting, as two of the 
main characteristics of pavement, play an important role in the monitoring of pavement and they are 
measured using the longitudinal and transverse profiles. 

Scholars developed new pavement automated data collection systems that use different types of 
technologies including ultrasonic sensors [1], point-based lasers [2], laser scanners [3–5], infrared 
sensors [6,7], digital cameras [8,9], and cellphones [10]. The most important factor besides the 
accuracy of using these technologies is their costs. Due to the extensive production of digital cameras 
as a tool in video games, the costs of RGB-D cameras have been significantly reduced. Microsoft 
Kinect is one of the most used of RGB-D cameras, which can project the rays and collect RGB and 
infrared images. In 2015 the second version of this camera was released which has higher accuracy 
(1920 × 1080 pixels for RGB image and 512 × 424 pixels for depth image). Figure 1 demonstrates both 
sensors’ components, including the infrared sensor, the RGB camera, the microphone, and the tilt 
motor [11,12]. 
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Figure 1. Microsoft Kinect components: (a) Kinect v1; (b) Kinect v2. 

There are two types of technologies that Kinect sensors apply to measure the depth: Time of 
flight (ToF) and 3D scene reconstruction. The former employs radiation and reflection of a continual 
laser pulse that has two signals with different phases. ToF technology can be classified into two 
categories: Direct ToF (pulse) and Indirect ToF (continuous). The former measures the elapsed time 
between radiation and detection, which is not used in Kinect due to its cost. The latter technology 
benefits from irradiation of surface with sinus or square waves in a frequency between 10 to 100 MHz. 
Afterward, four reflection waves with 90 degrees phase differences are absorbed by the camera, and 
they are converted to distances. Microsoft Kinect v2 uses this technology. It is also worth noting that 
the phase offsets of radiation in Kinect v2, which uses this technology, are 0, ଶଷ 𝜋 and ସଷ 𝜋. The 3D 
scene reconstruction technology uses two different cameras to reconstruct the 3D surface. One of 
them illuminates the object with a laser beam and the other absorbs the beam reflection. In this 
method, the vertical distance of a point from the camera could be measured regarding the known 
parameters such as the distance between two cameras, the angles between the horizontal axes of the 
sensors, and radiation and reflection waves. 

Other scholars in other fields have used the sensors for an automated data collection, while a 
few studies have implemented this sensor in transportation engineering. The aim of this study is to 
use this sensor and develop a new image processing technique to compute roughness and rutting. In 
the next section, the methodology is described in details and the results of the case study of 
computing roughness and rutting will be provided with the newer version of Kinect called Microsoft 
Kinect v2. 

2. Methods 

The methodology of this paper is divided into three main steps as they are described in  
Figure 2. 

 
Figure 2. Methodology flowchart. 

2.1. Preprocess 

A cart was designed and fabricated (schematic view in Figure 3), which was capable of mounting 
multiple sensors on it and providing different vertical distances between the sensor and the surface. 
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This study is limited to focusing on one sensor, as it covers almost the width of a lane in the vertical 
distance of above 1 m from the ground [13]. 

 
Figure 3. The schematic view of the fabricated cart. 

A 100-m section of the pavement was used as the main field of data collection, which has 
different types of ruttings and different levels of roughness. Five hundred frames of RGB-D images 
were captured at multiple stations along this road. The stations were defined considering the 
required amount of coverage between each of the two successive images. 

2.2. Process 

Image processing techniques consist of four steps, including applying filters, sensor calibration, 
stitching images, and slope correction. Each of these steps will be discussed in detail in the following 
sections. 

2.2.1. Applying Filters 

To smooth the collected images and reduce the noise level, a low pass filter (mean filter), as it is 
visualized in Figure 4, was applied followed by a Gaussian to the data. The 60 peripheral pixels from 
each dimension were removed from each matrix and then each pixel of these 500 matrices was 
averaged to have a high-resolution final matrix. 

 
Figure 4. Mean filter. 

The Gaussian filter was used with the window size of 5 × 5 and the deviation of 2 as two 
dimensions of the filter. The authors decided to choose this filter instead of the mean filter to make 
the pixels become more homogeneous within each window. In other words, the filter was used to 
blur everything that is less than the window size of the filter. The standard deviation of this filter 
determines the shape of the Gaussian function and the size of the mass was about three sizes of the 
standard deviation. The Gaussian and Mean filters were used to compute rutting and roughness, 
respectively. 

2.2.2. Sensor Calibration 

The MATLAB Toolbox was used in order to determine the intrinsic (focal length, principal 
points, and the skew coefficient) and extrinsic parameters of the camera, which can compensate for 
the distortion effect by capturing multiple images from a checkerboard. Fifty pairs of points from the 
checkerboard in a constant distance were used to develop the matrices. This transformation matrix 
converts the color image coordinate (x, y) into the infrared image coordinate (X, Y). 
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By measuring the intrinsic parameters, the point cloud was developed and normalized for each 
of the cameras. Then, the extrinsic parameters were measured to compute the rotation and 
transformation matrices in order to have a connection between the right and left cameras (infrared 
and the RGB cameras). Equation (1) is the transformation matrix and Equation (2) is the rotation 
matrix in which R is a 3 × 3 rotation matrix, The XR and XL are the right and left cameras coordination, 
respectively, and T is the transformation matrix. Figure 5 shows a 3D view of the camera location and 
the images from the checkerboard [14]. 

൥𝑋𝑌1൩ ൌ 𝑇 ቈ𝑥𝑦1቉ ൌ ൥𝑎ଵ 𝑎ଶ 𝑎ଷ𝑎ସ 𝑎ହ 𝑎଺𝑎଻ 𝑎଼ 1 ൩ ቈ𝑥𝑦1቉, (1) 

𝑿𝑹 ൌ 𝑹 ൈ 𝑿𝑳 ൅ 𝑻, (2) 

 
Figure 5. 3D view of the camera location and the images from the checkboard. 

It should be mentioned that the size and field of view (FoV) of the RGB and the infrared cameras 
are different, which are 1920 × 1080 and 512 × 424 pixels, respectively. The calibrations’ output has 
reduced to 370 × 460 pixels, which have the matched images. 

2.2.3. Stitching 

In order to create a 3D reconstruction of pavement surface, the successive images were stitched 
together. Thus, the colored images were mapped first, followed by mapping the depths matrices. 
Then, the RGB images and the depth matrices were matched by using the transformation matrix. The 
speeded-up robust features (SURF) algorithm was used to match the corresponding features between 
two RGB images. The captured images had overlaps, which enable the algorithm to identify the 
corresponding features. Figure 6a shows the application of the SURF algorithm. In order to reduce 
the noise of corresponding features between two successive points, the M-estimator sample 
consensus (MSAC) algorithm was used. This algorithm is a robust estimation procedure for finding 
the transformation matrix between sets of images. As it is visible in Figure 6a, detection of two 
corresponding points was associated with some level of noise. The white lines are associated with the 
first image and the red correspond with the second one, which is aligning some places. The 
transformation matrix connects the maximum pairs of points, associated with the images, between 
two successive images. The random sample consensus (RANSAC) algorithm was used to compute 
this transformation matrix and to reduce the effect of outlier detection. This algorithm assumes that 
at least 50% of the points can be mapped together after using the algorithm. Figure 6b shows the 
images after applying MSAC algorithm. 
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Figure 6. Applying the stitching algorithm: (a) Speeded-up robust features (SURF) algorithm; (b) M-
estimator sample consensus (MSAC) algorithm. 

2.2.4. Slope Correction 

The collected depth data shows a trend, which can cause erroneous data. Some algorithms, 
including random sample consensus (RANSAC) and singular-value decomposition (SVD), can be 
applied to the dataset to overcome this issue. The RANSAC algorithm selects some random points 
from the dataset that corresponds to a surface and fits a plane through the selected points. Then, the 
amounts of residuals between the fitted plane and the original data points are calculated. By iterating 
this procedure, the plane that has the least sum of squares of residuals is selected. However, the 
output of implementing this algorithm is not unique since the points are selected randomly, at each 
iteration. 

The second approach to overcome this issue could be implementing a linear regression method 
to create a plane that corresponds with the dataset and rotating the plane to create a horizontal plane, 
which has a zero slope on the z dimension. While the results of these approaches are not unique, this 
clockwise or counterclockwise rotation changes the 3D fitted plane into a 2D plane. In this study, in 
order to compensate for the erroneous slope generated by the sensor, the SVD algorithm was applied 
to the dataset. This algorithm detects the prominent direction of the data spread and rotates the fitted 
plane corresponds with the data in the two dimensions.  

2.3. Post Processing 

The International roughness index (IRI) was computed using the equation explained in ASTM 
1364-95 (American society for testing and materials). Roughness is defined as the irregularities in the 
pavement surface, which declines ride quality and increases vehicle depreciation. Moreover, the 
surface depression, which usually occurs in the path wheel, is called rutting. In this study, the rutting 
depth was measured by fitting a polynomial equation in the transverse profile dataset. 

3. The Summary of Results 

Figure 7a,b are showing the stitched images along the road and the transverse profile, which 
visualizes three different types of rutting. 

  
(a) (b) 

Figure 7. Stitched images: (a) A 3D point cloud, (b) transverse profiles [7]. 



Proceedings 2020, 42, 47 6 of 6 

 

Acknowledgments: The authors acknowledge the technical comments of Mohammad.R Jahanshahi at Purdue 
University. 

References 

1. Pan, W.H.; Sun, X.D.; Wu, L.M.; Yang, K.K.; Tang, N. Damage Detection of Asphalt Concrete Using Piezo-
Ultrasonic Wave Technology. Materials 2019, 12, 443. 

2. Hui, B.; Tsai, Y.J.; Guo, M.; Liu, X. Critical assessment of the impact of vehicle wandering on rut depth 
measurement accuracy using 13-point based lasers. Measurement 2018, 123, 246–253. 

3. Ye, C.; Li, J.; Jiang, H.; Zhao, H.; Ma, L.; Chapman, M. Semi-Automated Generation of Road Transition 
Lines Using Mobile Laser Scanning Data. IEEE Trans. Intell. Transp. Syst. 2019, 1–14. 
doi:10.1109/TITS.2019.2904735. 

4. Sollazzo, G.; Wang, K.C.P.; Bosurgi, G.; Li, J.Q. Hybrid Procedure for Automated Detection of Cracking 
with 3D Pavement Data. J. Comput. Civ. Eng. 2016, 30, 4016032. 

5. Cabo, C.; Kukko, A.; García-Cortés, S.; Kaartinen, H.; Hyyppä, J.; Ordoñez, C. An Algorithm for Automatic 
Road Asphalt Edge Delineation from Mobile Laser Scanner Data Using the Line Clouds Concept. Remote 
Sens. 2016, 8, 740. 

6. Chen, Y.L.; Jahanshahi, M.R.; Manjunatha, P.; Gan, W.; Abdelbarr, M.; Masri, S.F. Inexpensive multimodal 
sensor fusion system for autonomous data acquisition of road surface conditions. IEEE Sens. J. 2016, 16, 
7731–7743. 

7. Firoozi Yeganeh, S.; Golroo, A.; Jahanshahi, M.R. Automated rutting measurement using an inexpensive 
RGB-D sensor fusion approach. J. Transp. Eng. Part B Pavements 2019, 145, 04018061. 

8. Fu, T.; Stipancic, J.; Zangenehpour, S.; Miranda-Moreno, L.; Saunier, N. Automatic Traffic Data Collection 
under Varying Lighting and Temperature Conditions in Multimodal Environments: Thermal versus 
Visible Spectrum Video-Based Systems. J. Adv. Transp. 2017, 2017, 1–15. 

9. Radopoulou, S.C.; Brilakis, I. Automated Detection of Multiple Pavement Defects. J. Comput. Civ. Eng. 2017, 
31, 4016057. 

10. Yeganeh, S.F.; Mahmoudzadeh, A.; Azizpour, M.A.; Golroo, A. Validation of smartphone based pavement 
roughness measures. arXiv 2019, arXiv:1902.10699. 

11. Corti, A.; Giancola, S.; Mainetti, G.; Sala, R. A metrological characterization of the Kinect V2 time-of-flight 
camera. Rob. Auton. Syst. 2016, 75, 584–594. 

12. Mahmoudzadeh, A.; Yeganeh, S.F.; Golroo, A. Kinect, a novel cutting edge tool in pavement data collection. 
In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences—ISPRS Archives, Kish Island, Iran, 23–25 November 2015; Volume 40, No. 1W5. 

13. Mahmoudzadeh, A.; Golroo, A.; Jahanshahi, M.R.; Firoozi Yeganeh, S. Estimating pavement roughness by 
fusing color and depth data obtained from an inexpensive RGB-D sensor. Sensors 2019, 19, 1655. 

14. Kim, C.; Yun, S.; Jung, S.W.; Won, C.S. Color and depth image correspondence for Kinect v2. In Advanced 
Multimedia and Ubiquitous Engineering; Springer, Berlin/Heidelberg, Germany, 2015; pp. 111–116. 

© 2019 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


