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Abstract: The results of an investigation of the electrical resistivity of Ga2O3 thin films modified with 
silicon under the influence of oxygen in the range of O2 from 9 to 100 vol. % and changes in the 
heating temperature of structures from 25 to 700 °C were presented. Thin films of Ga2O3 were 
obtained by RF magnetron sputtering of Ga2O3 targeted with pieces of Si on the target’s surface in 
oxygen–argon plasma. The possibility of developing selective oxygen sensors based on thin films 
Ga2O3 modified with silicon with a temperature of maximum response 400 °C was shown. Oxygen 
influence leads to a reversible increase in the samples’ resistance, due to the chemisorption of 
oxygen on the surface of thin Ga2O3 films. An increase in the response of sensors based on the thin 
polycrystalline films of gallium oxide modified with silicon is caused an increase in the adsorption 
centers for O−, due to an increase in the surface inhomogeneity and the appearance of additional 
adsorption centers Si4+. 

Keywords: gallium oxide; thin films; RF-magnetron sputtering; oxygen 
 

1. Introduction 

It is offered to use high-temperature oxygen sensors based on polycrystalline films and single-
crystal wafers of β-Ga2O3 in a number of papers [1–5]. In the range of working temperatures T from 
700 to 1100 °C, oxygen penetrates into the bulk of Ga2O3, where it interacts with the oxygen vacancies 
VO. It was experimentally shown that with increasing oxygen concentration in a mixture of O2 + N2 
from 20 to 100 vol. % sensor’s resistance increases 1.04 ÷ 1.6 times. The disadvantages of such sensors 
are high power consumption and relatively weak sensitivity to O2. High operating temperatures 
make it difficult to develop sensors compatible with other elements of gas analytical systems. 

The possibility of creating low-temperature O2 sensors based on Ga2O3 nanowires was 
considered in Reference [6]. The sensitivity of the structures to gas was explained by the 
chemisorption of O2 particles on the semiconductor surface. The authors excluded bulk effects 
involving of interaction between O2 and VO. The sensor response increased with oxygen 
concentration according to a power law with an index of 0.57 at a temperature of 300 °C that 
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corresponds to the maximum sensitivity. The high sensitivity to gas at low temperatures was 
explained by the increase in the ratio between the surface area of a semiconductor and its bulk. In 
this research, the selective detection of O2 has been experimentally established. The sensitivity of the 
structures to O2 was investigated in a limited range of oxygen concentration from 0.5 to 5 vol. %. 

Currently, many studies are devoted to silicon doped gallium oxide. Such material is of interest 
to power electronics. However, the gas-sensitive properties of gallium oxide with the addition of 
silicon have not been studied. The purpose of this work is to research the gas-sensitive characteristics 
of Ga2O3 thin films modified with silicon with exposure to O2. In this work, we denote gallium oxide 
modified with silicon as Ga2O3–Si. 

2. Materials and Methods 

Ga2O3 thin films were formed by the RF magnetron sputtering of a gallium oxide target (99.999% 
purity, made in the USA) in oxygen-argon plasma using the Edwards A-500 installation. 
Polycrystalline polished sapphire wafers were used as a substrate. The substrate was not specifically 
heated. Working chamber pressure and the installation’s power capacity were 7 × 10−3 mbar and 70 
W, respectively. Oxygen concentration in Ar+O2 mixture remained at 56.1 ± 0.5 vol. %. Distance 
between the target and the substrate was 70 mm. It took 20–24 min to sputter one film onto a sapphire 
substrate. Pieces of Si (99.999% purity) placed on the surface of the target to modify samples. The 
ratio of the surface areas of the Si pieces and the sputtered part of the target was 3 × 10−3. After 
deposition of Ga2O3 films, the obtained structures were annealed in an Ar atmosphere for 30 min at 
a temperature of 900 °C to form the β-phase of Ga2O3 [7]. The film thickness was 160–180 nm and was 
measured by means of a Solver HV atomic force microscope of NT-MDT. 

To measure the resistance of the sensors, a metallic chamber with 600cm3 volume was used. 
There were two gas sensors into the metallic chamber. A mixture of nitrogen and oxygen of high 
purity was pumped through the chamber. The content of the gas mixture components was control 
by Bronkhorst gas flow meters. The gas mixture flow was maintained at a constant 1800 cm3/min level. 
A concentration of 0 vol. % of O2 corresponds to pumping only nitrogen through the chamber. 
Measurements of the resistance of the structures were carried out using a Keithley 2636A source–
meter. The applied voltage to the samples was 5 V. The sensors were heated using a laboratory power 
source. 

The morphology of the surface of the films was studied using a Solver HV atomic force 
microscope of NT-MDT. The determination of the elemental composition of gallium oxide thin films 
was carried out using specially manufactured samples of a large area. XPS was conducted on the 
analytic complexity of the Surface Science Center (Riber). To excite X-ray spectra, AlKα radiation was 
used (hv = 1487 eV). XPS spectra were obtained in an ultrahigh vacuum (~10−9 Torr) using a two-stage 
cylindrical mirror analyzer. The energy resolution for the XPS spectra was~0.1 eV. The structure and 
phase composition of gallium oxide films was determined by X-ray diffraction analysis using a high-
precision Shimadzu XRD-6000 unit (Shimadzu Corporation, Japan). 

3. Results and Discussion 

Using atomic force microscopy, it was found that the surface of the Ga2O3–Si thin films was a 
more developed surface of Ga2O3 films and represented by grains of the same shape in the form of 
thin flakes oriented in the same direction with the characteristic dimensions of 145 and 100 nm. The 
surface roughness of the Ga2O3–Si films was 0.2345 microns. The surface structure of Ga2O3 films 
without additives was represented by irregularly shaped grains with an average characteristic size 
of 100 nm. The roughness of such films was 0.0783 microns. It should be noted that an increase in 
grain size was observed for thin films of Ga2O3 films obtained by RF magnetron sputtering and upon 
doping with Nb and W [8,9]. From our results, it follows that modifying of films with silicon 
promoted the formation of larger grains of Ga2O3. However, in general, the surface of the film was 
more embossed, i.e., the specific surface area in contact with oxygen increases. 
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According to XRD analysis, the samples consisted of β-phase gallium oxide polycrystals (Figure 1) 
[10]. Also, according to XRD, there were two intense peaks associated with sapphire [10,11]. For the 
Ga2O3–Si films, there were peaks corresponding to SiO2 (114) and (222). 
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Figure 1. XRD pattern of the pure Ga2O3 and Ga2O3–Si thin films. 

XPS analysis of the samples of the pure Ga2O3 and Ga2O3–Si showed that spectra contain 
followings lines: Gallium Ga 2p—1118 eV, the Ga LMM Auger transition—598–370 eV, Ga 3p—105 eV, 
Ga 3d—20 eV, oxygen O 1s—530 eV, the O KLL Auger transition—1000–960 eV. The energy position 
of the Ga 2p and Ga 3d lines indicated that the thin films correspond in composition to Ga2O3. The 
analysis of silicon in Ga2O3 was difficult, due to the overlap of the Si 2p and Ga 3p lines. However, in 
the spectrum of the sample of Ga2O3–Si after annealing, there was a slight increase in the signal 
intensity in the Si 2p region. In this case, silicon was probably in the oxidized state of SiOx (1< x <2). 
It was not possible to determine the concentration of silicon in the samples because of its low value. 
It was previously noted that when doping Ga2O3 films obtained by magnetron sputtering with Si, 
silicon oxide was not formed [12]. In this research, annealing was carried out under other conditions. 

Quantitative XPS analysis of the samples showed that for the pure Ga2O3 thin films, an O/Ga 
ratio was 1.37. Stoichiometric Ga2O3 possess an O/Ga ratio of 1.5. The O/Ga ratio in Ga2O3 films 
depends on the sputtering conditions [13]. It should be noted that the obtained films of the pure Ga2O3 
were close to stoichiometric. The Ga2O3–Si thin films were characterized by an O/Ga ratio of 1.06. 
That is, gallium oxide films are characterized by a lack of oxygen. The oxygen content in the films 
mainly depends on the annealing conditions. We believed that a significant deviation from 
stoichiometry for the Ga2O3–Si thin films towards a decrease in the oxygen content was caused by an 
increase in the specific surface of the films upon modified with silicon. Under conditions of high-
temperature annealing in an argon atmosphere, the probability of desorption of lattice oxygen OO 
rose with an increase in the specific surface of the films. 

Figure 2 shows the change in the electrical resistance of the two sensors based on the Ga2O3–Si 
thin films at exposure to 44.5 vol. % of oxygen and at T = 600 °C. Sensors were initially located in a 
nitrogen atmosphere. Differences in the characteristics of sensors, their kinetics, response values, 
response and recovery times were caused by the disadvantages of magnetron sputtering technology 
of thin films. However, the regularities for the sensors obtained on one plate were the same. The 
sources of differences of samples can be the heterogeneous distribution of silicon, different 
concentration of local defects, minor differences in the area and thickness of films, etc. Oxygen 
influence on sensors led to reversible changes in their resistance. It was discovered that in the 300–
700 °C temperature range after pumping oxygen out of the chamber, the resistance of the samples 
was fully recovered. At T ≤ 300 °C accuracy of measuring instruments’ readings was significantly 
impacted by noises, due to high resistance of the sensors. At higher temperature ranges (300–700 °C), 
the sensors have significant reproducibility of the characteristics. 

To evaluate the performance of sensors, the response and recovery times were estimated. The 
response time tres is the time period during which sensor resistance reaches 0.9RSst level after the 
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beginning of oxygen exposure, where RSst is sensor resistance stationary value at 44.5 vol. % of oxygen 
concentration. The recovery time trec denotes the time interval during which sensor resistance reaches 
level 1.1R0st, where R0st is sensor’s stationary resistance value in the nitrogen atmosphere. The shortest 
response time for sensors was observed at T = 600 °C and was 11–13 s. The recovery time was~70–80 s. 
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Figure 2. Time dependence of resistance of sensors based on the Ga2O3–Si thin films at exposure to 
44.5 vol. % of O2 and at T = 600 °C. 

The following relation was chosen as the sensor response S to oxygen: 

S = Rs(C)/RN, (1)

where C is the oxygen concentration; Rs(C) is the electrical resistance of the samples in the gas mixture 
O2 + N2; RN is the electrical resistance of the samples in the nitrogen atmosphere. The samples were 
not practically subjected to oxygen exposure in the temperature range from room temperature to 200 °C. 
Starting from a temperature of 200 °C, Ga2O3–Si exhibited sensitivity to O2. Temperature dependences 
of the sensor response to oxygen concentrations 44.5 and 100 vol. % in the temperature range from 
200 to 700 °C are shown in Figure 3. There was a pronounced maximum of the sensor response to 
oxygen on the curves at T = 400 °C. Such temperature of the maximum response is much lower than 
in References [1–5], but higher than in Reference [6]. The response of the sensors decreased with a 
further increase in temperature. However, at T = 700 °C, for all oxygen concentrations, a slight 
increase in the response of the Ga2O3–Si structures was observed. 

The response of sensors with increasing oxygen concentration rose according to the power law 
S~Cm at all temperatures chosen for research (Figure 4). The value of the index m depends on the 
temperature. At a temperature 400 °C m = 0.86 ± 0.02 and at T = 500 ÷ 700 °C m = 0.61 ± 0.04. 

Evaluation of the effect of H2 and CO on the resistance of Ga2O3-Si was carried out at a 
temperature corresponding to the maximum response to oxygen. A mixture containing 21 vol. % of 
O2 and 79 vol. % of N2 was chosen as the initial medium. Impact of 1.55 vol. % of H2 and 160 ppm of 
CO led to a slight decrease in Rs by 1.9 and 1.1 times, respectively. Exposure to 71 ppm nitrogen 
dioxide led to an increase in film resistance by 10 times. It follows from this that under the established 
conditions, the Ga2O3-Si thin films react poorly to the exposure to high concentrations exceeding the 
maximum permissible limits of reducing gases. However, the resistance of the Ga2O3–Si thin films 
increased sharply when oxidizing gases appear in the atmosphere. 

The obtained dependence of the sensor response on the oxygen concentration can be explained 
by the chemisorption of oxygen on the surface of thin Ga2O3 films. In the temperature range from 300 
to 700 °C oxygen was chemisorbed on the Ga2O3 surface, mainly in atomic form and captured an 
electron from the conduction band of gallium oxide [14]. According to XPS analysis, the Ga2O3–Si 
films were characterized by a significant deviation from stoichiometry. The surface and bulk of 
Ga2O3-Si thin films were saturated with superstoichiometric gallium atoms Ga3+. In addition, 
superstoichiometric silicon atoms Si4+ were present on the surface of the Ga2O3 thin films. 
Superstoichiometric gallium Ga3+ and Si4+ atoms on the surface of a gallium oxide film acted as 
adsorption centers for oxygen atoms and molecules. An increase in the index m and the sensor 
response at temperature range 350–500 °C was caused by the influence of Si4+ and a reaction with 
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oxygen at these temperatures. A decrease in the response of sensors at temperatures above 500 °C 
(Figure 3) was caused by the formation of a SiO2. 
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Figure 3. Temperature dependence of the sensor response to oxygen. 
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Figure 4. Dependence of the sensor response on the oxygen concentration. 

The negative charge of oxygen ions on the Ga2O3 surface, which, due to the high concentration 
of intrinsic and introduced defects, is an n-type semiconductor, caused the energy bands to bend 
upward. In this case, a space charge region was formed, depleted in the main charge carriers—
electrons. The energy band bending eφs~Ni2, where Ni is the surface density of oxygen ions O− 
chemisorbed on gallium oxide films. In this case, the resistance and response of the sensors to oxygen 
are proportional to eφs. An increase in Ni during oxygen chemisorption leads to an increase in eφs and 
a corresponding increase in resistance. An increase in the sensor response upon the modification of 
thin gallium oxide films by silicon is caused by an increase in the adsorption centers for O− due to an 
increase in the surface inhomogeneity and the appearance of additional adsorption centers Si4+. 

4. Conclusions 

Thus, the possibility of creating oxygen sensors based on Ga2O3–Si thin films prepared by the 
method of RF magnetron sputtering is shown. It was discovered that the obtained films correspond to 
β-phase of gallium oxide. The studied structures demonstrate sensitivity to oxygen from 9 to 100 vol. %. 
The maximum response of the structures is observed at 400 °C. Oxygen influence leads to a reversible 
increase in the samples’ resistance, due to chemisorption of oxygen O− on the surface of thin Ga2O3 
films. An increase in the response of sensors based on the thin polycrystalline films of gallium oxide 
modified with silicon is caused an increase in the adsorption centers for O−, due to an increase in the 
surface inhomogeneity and the appearance of additional adsorption centers Si4+. The oxygen reaction 
with Si4+ takes place in the temperature range of 350–500 °C. 
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