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Abstract: Deep learning techniques are being widely applied to Human Activity Recognition 
(HAR). This paper describes the implementation and evaluation of a HAR system for daily life 
activities using the accelerometer of an iPhone 6S. This system is based on a deep neural network 
including convolutional layers for feature extraction from accelerations and fully-connected layers 
for classification. Different transformations have been applied to the acceleration signals in order to 
find the appropriate input data to the deep neural network. This study has used acceleration 
recordings from the MotionSense dataset, where 24 subjects performed 6 activities: walking 
downstairs, walking upstairs, sitting, standing, walking and jogging. The evaluation has been 
performed using a subject-wise cross-validation: recordings from the same subject do not appear in 
training and testing sets at the same time. The proposed system has obtained a 9% improvement in 
accuracy compared to the baseline system based on Support Vector Machines. The best results have 
been obtained using raw data as input to a deep neural network composed of two convolutional 
and two max-pooling layers with decreasing kernel sizes. Results suggest that using the module of 
the Fourier transform as inputs provides better results when classifying only between dynamic 
activities. 
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1. Introduction 

Human Activity Recognition (HAR) has become an important research field due to its wide 
range of applications such as tracking of sport performance [1], patients monitoring in medicine [2] 
[3] or supervision of elderly people at home [4]. 

In the literature, it is possible to find several HAR studies using on on-body sensors [5] or 
smartphones [6]. The later have become popular all over the world and provide numerous sensors 
such as accelerometers and gyroscopes that allow acquiring data from people who continuously carry 
those every day in a less invasive way. 

Signal processing has been applied to acceleration signals in order to provide the best input 
configuration for the classification system. Some works have directly used raw data whereas others 
have performed frequency transforms like Fourier transform or a combination of both strategies [7]. 

Deep learning architectures have been used for both feature extraction and activity classification. 
In recent research, Convolutional Neural Networks (CNNs) [8] and Recurrent Neural Networks 
(RNNs) [9] have been applied as core of deep learning systems for HAR. 
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Research works on HAR propose unique signal processing and deep learning techniques for 
classifying the physical activities included in the dataset. 

The purpose of this work is to build a deep learning system for classifying activities, comparing 
different inputs transforms. This way, it would be possible to select the most appropriate deep 
learning and signal processing strategies for recognizing several types of activities. This study reaches 
the best results for the used dataset. 

2. Materials and Methods 

This section provides a description of the dataset, the signal processing, the deep learning 
architecture and the cross-validation methodology used in this study. 

2.1. Dataset 

For this work, we used the MotionSense dataset, which contains recordings of six different 
physical activities (walking downstairs, walking upstairs, sitting, standing, walking and jogging), 
performed by 24 subjects. These subjects wore in their trousers’ front pocket an iPhone 6S with 
accelerometer and gyroscope sensors, collecting data sampling at 50 Hz. The influence of the 
accelerometer accuracy is negligible because the average bias of the accelerometer is less than 0.004 
g [10]. The experiment took place at the Queen Mary University of London’s Mile End campus. 

2.2. Signal Processing 

We implemented a signal processing chain for data collection: pre-process module, 
segmentation and transformation. First, we performed a linear interpolation of raw sensory data from 
the accelerometer for dealing with wireless data loss. Second, we used Hamming windowing to 
divide the data into 3-s windows (150 samples per window) separated by 1 s. Each window was 
labeled by the mode of the classes included in the sample sequence. Third, we used two data formats 
as input of the deep learning architecture. On the one hand, we directly used raw data in time domain. 
Acceleration signals from static activities such as sitting or standing have a particular behavior in 
time domain: they keep an almost constant value. On the other hand, we expanded each window to 
256 points using zero padding. After that, we obtained the module of the Fast Fourier Transform 
(FFT). Since the FFT is symmetric, we obtained a 128-point representation of the spectrum in the 0–
25 Hz frequency band. From this representation, we selected the first 100 points of the spectrum 
corresponding approximately to the 0–20 Hz frequency range, discarding negligible energy above 20 
Hz in these signals. Dynamic activities such as walking or jogging are characterized by energy and 
periodicity, which is noticeable in the frequency domain. Figure 1 represents the signal processing 
performed to the acceleration signals. In the dataset, we have a total of 27,762 windows. 

 
Figure 1. Signal processing performed to the acceleration signals. 
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2.3. Deep Learning Architecture 

We implemented a basic deep learning architecture for both inputs: raw data and FFT module. 
After that, we adjusted this architecture by increasing the number of convolutional layers and 
modifying the kernels’ configuration. 

The deep learning architecture that provides the best performance was composed of two 
convolutional and two max-pooling layers with decreasing kernel sizes, as it is shown in Figure 2. 

 
Figure 2. Deep learning architecture used in this work. 

During experimentation, we used several variations of this architecture to select the most 
appropriate configuration for each type of input (raw data or FFT). In these configurations, we used 
decreasing kernel sizes in convolutional and max-pooling layers. This way, we reduced the kernel 
size of the second convolutional layer. The pooling kernel size was half of the previous convolutional 
kernel size. These kernel sizes had the format (1,y) when raw data was used in order to extract 
dependences in time from each coordinate while they had (3,y) when the FFT module was used in 
order to extract dependences over the three coordinates in the frequency domain. 

Regarding the learning algorithm, we used the validation set to adjust the main parameters of the 
deep learning architecture: 15 epochs, batch_size equal to 100 and ReLU as the activation function in all 
intermediate layers. The optimizer was fixed to the root-mean-square propagation method using a 
0.0005 learning rate and categorical cross entropy as loss function. We used the Glorot uniform 
initializer, also called Xavier uniform initializer, to set the kernel weights of the convolutional layers. 

2.4. Subject-Wise Cross-Validation 

In this study, we used a subject-wise three-fold cross-validation. For each iteration, we divided 
data from the 24 subsets into three subsets: one subset including data from 16 subjects (around 20,000 
windows) was used for training, one subset including data from 4 subjects was used for testing and 
one subset including data from 4 subjects was used for validation. Figure 3 shows the subsets for the 
three iterations of subject-wise cross-validation. This way, recordings from the same subject did not 
appear in training and testing subsets at the same experiment. 

 
Figure 3. Subsets for subject-wise cross-validation. 

During experimentation, we selected the performance of the testing subset considering the 
number of epochs that minimizes the error in the validation subset. 

3. Results 

Table 1 shows the mean of accuracy for the subject-wise three-fold cross-validation when 
classifying six activities with raw data as input. This table summarizes the experiments performed 
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including different configurations of the network. The kernel size of each layer is indicated in the 
table. For example, the configuration that obtains the best results (95.28%) uses two convolutional 
layers and two max-pooling layers: the first convolutional kernel has (1,15) size and its corresponding 
pooling kernel has (1,8) size while the second convolutional kernel has (1,10) size and its 
corresponding pooling kernel has (1,5) size. 

Table 1. Experiments using raw data for classifying 6 activities. 

Number of 
Convolutional Layers 

Convolutional Kernels Size 
(x,y) 

Pooling Kernels Size 
(x,y) 

Accuracy 
(%) 

1 (1,10) (1,5) 91.23 ± 0.55 
1 (1,15) (1,8) 92.92 ± 0.50 
1 (1,20) (1,10) 93.21 ± 0.49 
1 (1,30) (1,15) 91.95 ± 0.53 
2 (1,10)/(1,10) (1,5)/(1,5) 92.50 ± 0.51 
2 (1,15)/(1,10) (1,8)/(1,5) 95.28 ± 0.41 
2 (1,15)/(1,15) (1,8)/(1,8) 93.39 ± 0.48 
2 (1,20)/(1,10) (1,10)/(1,5) 91.93 ± 0.53 
2 (1,20)/(1,15) (1,10)/(1,8) 93.77 ± 0.47 
2 (1,20)/(1,20) (1,10)/(1,10) 93.63 ± 0.47 
2 (1,30)/(1,20) (1,15)/(1,10) 91.55 ± 0.54 

Table 2 shows the mean of accuracy for the subject-wise three-fold cross-validation when 
classifying six activities with the FFT module as input. This table summarizes the experiments 
performed including different configurations of the network. The configuration that obtained better 
results (94.19%) used a convolutional layer and a max-pooling layer: the convolutional kernel has 
(3,6) size and its corresponding pooling kernel has (1,3) size. 

Table 2. Experiments using the FFT module for classifying 6 activities. 

Number of Convolutional 
Layers 

Convolutional Kernels 
Size (x,y) 

Pooling Kernels 
Size (x,y) 

Accuracy 
(%) 

1 (3,3) (1,2) 93.34 ± 0.48 
1 (3,6) (1,3) 94.19 ± 0.45 
1 (3,9) (1,5) 93.00 ± 0.49 
2 (3,3)/(3,3) (1,2)/(1,2) 93.13 ± 0.49 
2 (3,6)/(3,6) (1,3)/(1,3) 92.83 ± 0.50 
2 (3,6)/(3,3) (1,3)/(1,2) 93.39 ± 0.48 

These results are considerably better than those reported in a previous work [11] using Support 
Vector Machines (SVMs): 86.33% of accuracy. 

During this work, we decided to perform experiments for different types of movements. First, 
we classified among the four dynamic activities in the dataset (walking downstairs, walking upstairs, 
walking and jogging) using both raw data and the FFT module as input. Results show that the system 
provides 88.18% of accuracy using raw data input and 90.14% of accuracy when the FFT module is 
used. The same experiments were performed over static activities (sitting and standing) but there 
were no significant differences in the results. 

4. Discussion 

Results obtained in the previous section validate the use of CNNs for feature extraction and 
activity classification comparing to SVMs technique used in previous work. 
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Results suggest that decreasing the kernel size in consecutive convolutional layers and halving 
this size to pooling kernels allows extracting relevant information from signals in the deep neural 
network. 

It is important to select the architecture of the deep neural network depending on the input data. 
Results show that two convolutional layers are needed for extracting features from raw data signals, 
while one convolutional layer is enough when using the FFT module. This suggests that computing 
the FFT to raw data is equivalent to introducing these raw data into one convolutional layer of the 
deep learning architecture. 

Dynamic activities are characterized by periodicity and energy distribution in the frequency 
domain, which is essential to distinguish among activities such as walking and jogging. It was found 
that using the FFT module as neural network input provides better results when recognizing dynamic 
activities comparing to using raw data. 

5. Conclusions 

This paper described the implementation and evaluation of a HAR system for daily life activities 
using acceleration signals from MotionSense dataset. This system was based on a deep neural 
network including convolutional layers for feature extraction and fully-connected layers for 
classification. This study performed different transformations to find the most appropriate input data 
format to the deep neural network. The best results were obtained using raw data as input to the 
deep neural network, composed of two convolutional and two max-pooling layers with decreasing 
kernel sizes. These results showed a 9% improvement in accuracy compared to the baseline system. 
Results suggested that using the module of the Fourier transform as input provides better results 
when classifying only between dynamic activities. 
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