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Abstract: We investigated electrochemical sensors based on graphite oxide (GrO) and oxidized 
carbon black (CbO). GrO and CbO were synthesized by the modified Hummers method. Single-
stranded DNA (ssDNA) probes were synthesized with a 5′ primary amine for attachment. These 
ssDNA oligonucleotides were immobilized on GrO and CbO using standard 1-ethyl-3-(3-dimethyl 
aminopropyl) carbodiimide (EDC) coupling. This formed an amide bond between the DNA-amine 
and carboxyl groups on GrO and CbO. GrO and CbO were used instead of graphite in a carbon 
paste material. This significantly enhanced the sensitivity of the biosensor for the reverse-
complementary DNA. We detected reverse-complimentary DNA using Electrochemical Impedance 
Spectroscopy (EIS) and Cyclic Voltammetry (CV) in a ferricyanide solution. The solution was spiked 
with the ssDNA oligonucleotide with the reverse-complementary sequence of the immobilized 
probe. The change in current or impedance was measured. We present early work on optimizing 
the fabrication method for DNA-functionalized carbon electrodes. Working electrodes were 
fabricated by drop-casting the active material onto a glassy carbon electrode surface. 
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1. Introduction 

Biosensors can detect diverse analytes. We want to detect nucleic acids from pathogens. If our 
sensor is sensitive, we can detect contamination in food or drugs. Electrochemical biosensors have 
been demonstrated by many groups for this purpose. Electrochemical biosensors are inexpensive, 
sensitive, simple, and rapid [1–3]. Label-free, electrochemical DNA detection is especially attractive 
as it does not require chemically modified probes [4]. However, DNA probes for electrochemical 
detection must be conjugated to the electrode surface. This can be accomplished by covalent 
attachment to carbon or by a gold-thiol link. Most electrochemical methods use gold electrodes and 
thiol attachment chemistry. We demonstrate an alternative with several advantages [5,6]. We show 
that DNA can be conjugated to specific forms of carbon by well-known 1-ethyl-3-(3-dimethyl 
aminopropyl) carbodiimide (EDC) coupling. The disadvantages of gold-thiol chemistry include a 
narrow potential window and high cost. Additionally, the surface of bare gold must be pristine for 
good functionalization. This can lead to irreproducible results. This can be overcome with careful 
technique but represents a significant barrier to entry. 

Carbon electrodes are an attractive alternative. Carbon has a wide potential window, high 
electron transfer, electrical conductivity, low background current, and is affordable [7]. Graphite 
oxide and carbon black oxide are widely used in electrochemical biosensors due to their high 
conductivity at room temperature, high surface area, thermal stability, and low cost [8–11]. These 
materials can be drop cast onto an existing conductive surface such as a glassy carbon rod. Glassy 
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carbon is used for its corrosion resistance and homogenous surface [12]. Different methods have been 
studied to anchor DNA strands. Other labs have attached DNA by adsorption, entrapment in a 
polymer matrix, and electrografting [13–15]. In this study, we show that DNA can be directly 
conjugated to conductive carbon particles. The particles can be formed into an electrode by drop-
casting in Nafion. We demonstrate the effectiveness of this approach by detecting reverse-
complementary DNA using cyclic voltammetry (CV) and electrochemical impedance spectroscopy 
(EIS). 

2. Experimental Process 

2.1. The Materials and Methods Section 

The DNA oligonucleotides used in this paper were synthesized by Integrated DNA Technologies 
(IDT, Coralville, IA, USA). The sequences of the oligonucleotides were: Probe single-stranded DNA 
(ssDNA): /5AmMC6/TTGAGGAGGAGGAGGAGAGGCGGGTTGAGG and complementary double-
stranded DNA (dsDNA): 5′-TCTCCTCCTCCTCCTCTTTTCTGAATAAGA-3′. 1-ethyl-3-(3-dimethyl-
aminopropyl) carbodiimide hydrochloride (EDC), was purchased from Sigma Aldrich Co. All other 
reagents were of analytical reagent grade. All of the solutions were prepared with Millipore deionized 
water. 

2.2. Synthesis of Graphite Oxide and Carbon Black Oxide 

Graphite oxide (GrO) and oxidized carbon black (CbO) were prepared from graphite powder 
and carbon black powder, respectively, by following Hammer’s method. Firstly, 0.5 g of NaNO3 and 
3 g of graphite powder were dissolved in 25 mL concentrated 98–99% sulfuric acid. Then the mixture 
was stirred for 3 h in an ice bath. We slowly added 3 g of KMnO4, as a potent oxidizing agent, to the 
mixture at room temperature. The mixture was stirred for 12 h. The oxidation reaction was 
interrupted by the addition of 20 mL 30% H2O2 solution. Immediately after the addition of 30% 
hydrogen peroxide, the color of the mixture changed to pale yellow. Subsequently, 120 mL of purified 
water was added to the solution. The resultant product was repeatedly centrifuged with H2O2 to 
adjust the pH to four. The final product was placed in a 60 °C oven for 12 h. Synthesis of CbO 
proceeded in the same manner [16,17]. 

2.3. Covalently Immobilization of DNA 

Single-stranded DNA was covalently attached to the carboxyl group of CbO and GrO surfaces 
through EDC coupling. The glassy carbon electrode (GCE) was polished with 0.3 mm γ-Al2O3., then 
sonicated in deionized water for about 30 s and then rinsed with deionized water. For immobilization 
of the oligonucleotide, 5 mg oxidized graphite and carbon black were suspended in a 1 M MES (pH 
4.5) containing 0.1 M EDC. Amine-modified ssDNA was added to the suspension (1 μM final 
concentration) and vortexed for 2 h at room temperature. The suspension was then washed with PBS 
buffer (pH 7.4) by centrifugation and resuspension. Finally, 50 μL of ethanol, 25 μL 5% Nafion, and 
50 μL DI water were added. The mixture was sonicated for 1 h. Then, a droplet of 2.5 μL of the Nafion-
carbon-DNA suspension was applied to the surface of the GCE. For hybridization, 4 μL of the 
complementary oligonucleotide was mixed in 200 μL of 20 mM NaCl in PBS buffer solution 
(containing 137 mM sodium chloride, 2.7 mM potassium chloride, and 10 mM Phosphate Buffer pH 
7.4) and applied to the ssDNA modified GrO/CbO. After 20 min, the surfaces were extensively 
washed for 20 min. Finally, the electrode was dried at room temperature for at least 3 h. Scheme 1 
shows the conjugation of an ssDNA onto the GrO surface and hybridization with a complementary 
target. 
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Scheme 1. The immobilization of an ssDNA onto the graphite oxide (GrO) surface and hybridization 
with a complementary target. EDC: 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide; glassy carbon 
electrode. 

2.4. Electrochemical Detection 

A conventional three-electrode system (Pine WaveDriver Galvanostat, Pine Instruments, 
Durham, NC, USA) was used for electrochemical characterization with modified GrO/CbO coated 
glassy carbon as working electrode, saturated Ag/AgCl (3.5 M KCl) as a reference electrode, and Pt 
as a counter electrode in a 0.1 M KCl solution containing 6 mM of K3Fe(CN)6. All measurements were 
performed at room temperature. Cyclic voltammetry and electrochemical impedance spectroscopy of the 
redox probe were performed to detect reverse-complimentary DNA. Cyclic voltammetry measurements 
were carried out between −0.4 V and 0.6 V. The scan rate of these measurements was 100 mV s−1. EIS was 
performed to monitor the whole procedure in the modification of the electrodes. Impedance measurements 
were carried out between 1 MHz and 1 Hz applying an AC amplitude of 25 mV. The electrolyte for the 
impedance measurement was 1 M KCl, containing 6 mM potassium ferricyanide. 

3. Result and Discussion 

Figure 1 presents the performance of the CbO and GrO electrodes conjugated to DNA. Single-
stranded DNA (ssDNA) was immobilized on the surface through the formation of covalent amide 
bonds between the amino groups of the oligonucleotides and carboxyl groups on the GrO and CbO. 
In Figure 1B, the anodic and cathodic current at 180 mV was the oxidation and reduction of iron 
cyanide in solution. The electron transfer (and, therefore, the current) was reduced when the 
electrode was conjugated to DNA (Figure 1A(II)). The current was further reduced when 
complementary DNA was added (Figure 1A(III)). Figure 1C shows the performance of the CbO 
electrode conjugated to DNA. Conjugation CbO to DNA also caused a decrease in charge transfer 
and reduced current. We attributed the reductions in current to the electrostatic repulsion between 
DNA and ferricyanide. This increased after the addition of complementary DNA. 
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Figure 1. DNA conjugation detected with Cyclic Voltammetry. (A) The schematic shows (I) the no-
DNA control, (II) single-stranded DNA (ssDNA)-coated electrode, and (III) the double-stranded DNA 
(dsDNA)-coated electrode. (B) Cyclic voltammograms of the GrO-modified electrodes recorded in 10 
mM potassium ferricyanide [K3Fe(CN)6] in 1 M potassium nitrate at a scan rate of 0.1 Vs−1, in the 
potential range between −0.4 to +0.7 V A. for the (I) GrO electrode, (II) ssDNA-GrO electrode, and (III) 
dsDNA-GrO electrode. (C) Equivalent cyclic voltammograms for (I) CbO electrode, (II) ssDNA-CbO 
electrode, and (III) dsDNA-CbO electrode. Insets show the baseline-corrected peak anodic current for 
each sample. 

We interpreted the greater reduction in current on GrO (as compared to CbO) to two causes: 
lower resistance and more efficient functionalization. GrO showed higher efficiency charge transfer 
from GrO to ferricyanide. The current for the unmodified GrO was much higher than the unmodified 
CbO. High performance of charge transfer on GrO was due to the regular structure of graphite (which 
reduces resistance). GrO also showed better functionalization. GrO consists of graphene oxide sheets 
and displays oxygen-containing functional groups on the surface (alcohols, quinones, and carboxylic 
acids). As a consequence, GrO has a high potential to create a covalent bond between oxygen and 
amines [18–20]. 

Nyquist plots of the EIS spectra of CbO/GrO electrodes in a 1 M KCl aqueous solution containing 
6 mM [K3Fe(CN)6] are shown in Figure 2. The bare GrO/CbO electrodes had a small AC impedance, 
indicating that the electron transfer between the electrode and electrolyte was fast (Figure 1B,C). The 
AC impedance increased after the GrO/CbO were conjugated to the DNA. This suggested more 
resistance to electron transfer between the electrode and the ferricyanide. The resistance was further 
increased when complementary DNA is added. EIS corroborated the CV results and indicated that 
the GrO had a lower resistance to electron transfer compared to the CbO electrode. 
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Figure 2. DNA conjugation detected with Electrochemical Impedance Spectroscopy (EIS). (A) A 
schematic shows (I) the no-DNA control, (II) ssDNA-coated electrode, and (III) dsDNA-coated 
electrode. (B) Nyquist plots of the EIS spectra recorded in 10 mM potassium ferricyanide [K3Fe(CN)6] 
in 1 M potassium nitrate at a frequency between 1 MHz and 1 Hz and an AC amplitude is 25 Mv for 
(I) GrO electrode, (II) ssDNA-GrO electrode, and (III) dsDNA-GrO electrode. (C) Equivalent Nyquist 
plots for the EIS spectrum of (I) CbO electrode, (II) ssDNA-CbO electrode, and (III) dsDNA-CbO 
electrode. 

4. Conclusions 

This study has introduced a method for conjugating amine-modified DNA to carbon black oxide 
and graphene oxide. We showed that graphene oxide and carbon black oxide bind DNA, and this 
prevents charge transfer to ferricyanide. This phenomenon allows for detecting reverse-
complementary DNA. Reduced peak current was attributed to the complementary DNA. This is a 
label-free biosensor; it requires no indicators or labels on the DNA. We show that graphite oxide is 
superior in performance to carbon black oxide. We attribute the higher performance to the ordered 
structure and lower resistance in graphite oxide compared to the more disordered, paracrystalline 
structure of carbon black [21]. This is a simple and rapid conjugation method for generating DNA 
sensors. 
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