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Abstract: In recent years, heterogeneous semiconductor photocatalysts have attracted great 
attention in the arena of environmental remediation and solar energy conversion; because, sunlight 
energy is a renewable, cheap, and accessible source of energy and also converting solar energy to 
chemical energy can be declined the energy crisis and global warming. Development of visible light 
heterogeneous photocatalysts with high efficiency and chemical stability is important for catalysis 
researchers. Among different types of semiconductor material, polymeric graphitic carbon nitride 
(g-C3N4) with a medium band gap of about 2.7 eV has been widely applied in photodegradation of 
organic pollutants, water splitting, CO2 reduction, solar cells, energy storage, and organic synthesis. 
Unfortunately, due to the high rate recombination of photoinduced carriers, the photocatalytic 
performance of the bare g-C3N4 is still poor. Hence, many strategies including metal doping, noble 
metal deposition, and coupling with semiconductor composites have been employed to modify g-
C3N4. Herein, we report the synthesis of g-C3N4/CuWO4 nanocomposite via a hydrothermal process. 
The prepared visible-light-driven nanocomposite exhibited an enhanced photocatalytic activity 
compared with bare g-C3N4 for the degradation of methylene blue (MB) under LED light irradiation. 
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1. Introduction 

Over the recent past, the global energy crisis and environmental concerns have attracted 
increasing attention of scientists. Hence, considerable research efforts have focused on visible-light-
active photocatalysts for the degradation of organic pollutants and H2 production due to the 
increasing demand for environmental care and clean energy harvesting [1]. Development visible 
light-driven photocatalysts with high effectiveness and good stability has been a hot spot in the field 
of photocatalysis. Various semiconductors, such as metal oxides, sulfides, carbon-based materials 
have been used to improve the solar energy utilization capability in the photocatalytic systems [2,3]. 
Among various types of semiconductors, polymeric graphitic carbon nitride (g-C3N4) as the most 
stable allotrope of carbon nitride has been regarded as a suitable candidate for visible-light-driven 
photocatalyst because of its unique optical properties, well-suited band gap (2.7 eV), physicochemical 
stability, and simple preparation [4]. Recently, g-C3N4 has useful applications in hydrogen evolution 
from water splitting, degradation of organic pollutants, CO2 reduction, energy storage, antibacterial 
activity [5–9]. However, the pristine g-C3N4 has shown low photocatalytic efficiency because of the 
insufficient visible-light absorbance, and fast recombination of photo-generated charge carriers [10]. 
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To improve the photocatalytic performance of the pristine g-C3N4, many efforts have been 
undertaken, which mainly include doping of heteroatoms and metals, construction of the 
mesoporous structure, copolymerization with organic molecules, and coupling with other 
semiconductors [11–14]. Among these strategies, the construction of heterojunctions with other 
semiconductors displays a great potential to improve the photocatalytic efficiency of g-C3N4. CuWO4 
is the ideal choice of semiconductor which only employs holes for oxidation reaction. The band edges 
of the graphitic carbon nitride (g-C3N4) lies in more negative region where generation of superoxide 
radicals is prevalent, conversely the band edges of CuWO4 lies in more positive region where 
generation of hydroxyl radicals is in excess. This feature of these semiconductors is appropriate for 
the Z-scheme photocatalytic system [15]. Therefore, a great deal of interest has been focused on the 
development of environmentally, and recyclable benign photocatalytic methods for the degradation 
of organic dyes [16,17]. In the current research, we present the synthesis of the g-C3N4/CuWO4 
photocatalyst and investigate its photocatalytic performance for the degradation of methylene blue 
as an organic pollutant under visible light. 

2. Experimental  

2.1. General 

Reagents and chemicals were all purchased from Aldrich, Merck and Fluka. Spectra of FT-IR 
were recorded by the method of KBr pellet on a Shimadzu IR-470 spectrometer. Energy dispersive X-
ray spectroscopy (EDS) was used to investigate the composition and structure of the samples and 
was recorded on Numerix DXP-X10P. UV-visible spectra of the samples were recorded on a UV-
visible spectrophotometer (UV-1700 Shimadzu, Japan) at a wave length range of 200–800 nm. 

2.2. Preparation of Bulk g-C3N4 

Bulk g-C3N4 powder was prepared according to the reported method [18]. The melamine was 
heated at 550 °C in a furnace for 4 h in static air at a ramp of 2.5 °C min−1 and the obtained yellow 
solid was grinded into powder in a mortar. 

2.3. Preparation of g-C3N4/CuWO4 

g-C3N4/CuWO4 was prepared by a hydrothermal method. First, 0.811 g of Cu(NO3)2·3H2O (3 
mmol) and 0.990 g of Na2WO4·2H2O (3 mmol) were dissolved in 30 mL of deionized water. The 
solution was stirred for 2 h. Then, the synthesized bulk g-C3N4 suspension was added into the above 
solution, and the mixture was put into an ultrasonic vibration generator for 1 h. The above mixture 
was then poured into a 50 mL Teflon-sealed autoclave and heated to 200 °C for 18 h. After that, the 
precipitate was washed with distilled water and ethanol and collected by centrifugation. The 
obtained precipitate was dried at 100 °C for 12 h. 

2.4. Photocatalytic Degradations 

In photodegradation process, 50 mg of the g-C3N4/CuWO4 photocatalyst was used for 
degradation of 50 mL aqueous solution of methylene blue MB with 10 ppm concentration under 250 
W high pressure mercury lamp irradiation. Before irradiation of light, the suspension was stirred in 
the dark condition for 30 min to achieve the adsorption-desorption equilibrium between the MB and 
the photocatalyst. All the photocatalytic experiments were carried out under the same conditions at 
25 °C. In the defined intervals (30 min), the sample of suspension (ca. 3 mL) was taken, centrifuged 
and then the absorption spectrum changes of MB were measured to monitor the MB 
photodegradation. 

3. Results and Discussion 

The FT-TR spectra of the g-C3N4/CuWO4 is illustrated in Figure 1, which shows that the main 
chemical structure of the g-C3N4 was remained after coupling with CuWO4. 
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The Energy-dispersive X-ray spectroscopy (EDS) of the g-C3N4/CuWO4 heterostructure in Figure 
2 confirmed the presence of Cu, C, N, O and W. 

 

Figure 1. FT-IR spectra of the g-C3N4/CuWO4. 

 
Figure 2. EDS spectra of the g-C3N4/CuWO4. 

UV-visible diffuse reflectance spectra were also recorded to investigate the light harvesting 
ability of the heterostructures and respective band gap calculations (Figure 3). The band gaps of the 
photocatalysts can be calculated by the equation [19]: 

αhv = A(hv − Eg)n/2   

where α, A, hv, and Eg are the optical absorption coefficient, a proportionality constant, a photon 
energy and the band gap energy respectively. The value of n depends upon the type of optical 
transition of the semiconductors: for direct transition, value of n is 1 where as for the indirect 
transition the value of n is 4. Thus, the band gap of the bulk g-C3N4 and g-C3N4/CuWO4 calculated 
from Tauc plot was estimated to be about 2.83 eV and 2.78 eV respectively (Figure 3a,b). 
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Figure 3. Tauc plot for the determination of band gap for the bulk g-C3N4 (a), and g-C3N4/CuWO4 (b). 

The photocatalytic activity of the g-C3N4/CuWO4 were evaluated through methylene blue (MB) 
degradation under visible light irradiation, and the results are shown in Figure 4. From Figure 4, 
before light irradiation, 48.0% of MB was removed on g-C3N4/CuWO4 after 60 min. After visible light 
illumination for 180 min, about 97.0% of MB was removed in the presence of g-C3N4/CuWO4. 
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Figure 4. Photocatalytic activity of the g-C3N4/CuWO4. 

4. Conclusions 

In this study, we have demonstrated the synthesis of a superior visible-light-driven 
photocatalyst 

g-C3N4/CuWO4 by a hydrothermal method. Under visible light irradiation, the photocatalyst g-
C3N4/CuWO4 showed an enhanced photocatalytic performance than g-C3N4 which can be attributed 
to the contribution of CuWO4 for the efficient separation and easy transfer of photogenerated 
electron-hole pairs. More than high efficiency, excellent stability in the photocatalysis process and 
easy separation of nanophotocatalyst are from main advantageous of (g-C3N4/CuWO4) in the 
photodegradation reaction. 
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