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Abstract: In this work, through Monte Carlo analyses on statistical volume elements, we show the 
effect of the grain morphology and orientation on the effective elastic properties of polysilicon 
beams constituting critical MEMS components. The outcomes of the numerical investigation are 
summarized through statistical (lognormal) distributions for the elastic properties as functions of 
grain size and morphology, quantifying therefore not only the relevant expected mean values, but 
also the scattering around them. Such statistical distributions represent a simple, yet rigorous 
alternative to cumbersome numerical analyses. Their utility is testified through the analysis of a 
statically indeterminate MEMS structure, quantifying the possible initial offset away from the 
designed configuration due to the residual stresses arising from the micro-fabrication process. 
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1. Introduction 

The drive towards miniaturization in the MEMS industry leads unavoidably to questions of 
homogeneity, which is commonly accepted from the continuum mechanics perspective. For 
polysilicon films, grain morphology and orientation eventually influence the mechanical response of 
MEMS devices when critical structural components (such as the suspension springs) are downsized 
[1–6]. Moreover, the deep reactive-ion etching process, leading to so-called over-etch [7] whose 
relevance gets increased when referred to dimensions comparable with the grain size, affects the 
accuracy of the geometrical layout [8]. Under these conditions, the expected spread in the operational 
behavior of the devices is a matter of concern both for MEMS design and reliability [9,10]. While this 
consequence is well known and expected, the quantification of the aforementioned spread is far from 
being under control. 

In this work, we focus on the analysis of the shift from the designed position for a statically 
indeterminate MEMS structure subject to residual stresses arising from the production process. While 
in an ideal design the exact dimensions and elastic behavior of the structural components can be 
foreseen with reasonable accuracy, in practice the dimensions of critical components become 
comparable with the silicon grain size. Accordingly, the material should be handled as 
heterogeneous, and the movable structure as an uncertain domain. Even if the effects of the scattering 
around the target elastic properties on the overall MEMS behavior are shadowed by other issues, for 
a moving mass held into position by nominally identical springs, the uncertainty about the stiffness 
properties immediately leads to a sensible offset away from the reference. This offset comes into play 
because of the always-present residual stresses in the polycrystalline silicon film, as shown in the 
next (Section 2). To account for the intrinsic stochastic nature of the problem, we propose in Section 
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3 to artificially build, via Voronoi tessellations, stochastic volume elements (SVEs) whose size is 
related to the MEMS’ critical component size. Each realization of the SVEs includes its own silicon 
grain morphology, so that accurate finite element (FE) analyses can provide the cumulative 
distribution function (CDF) of the relevant elastic properties. To overcome the computational burden 
in the analysis at the MEMS level, the numerical CDFs are best fitted with lognormal distributions. 
By means of these latter analytical CDFs, in Section 4 we show how to estimate the overall stiffness 
of (even folded) beams and how to apply such estimates to the quantification of the offset induced 
by the residual stresses. 

2. Statically Indeterminate MEMS Structure 

We consider a rather simple scheme, common to several MEMS devices [11]: a movable plate, of 
mass m, is connected to the substrate via two suspension springs. Even if nominally identical as 
discussed in the Introduction, we assume that the stiffness is a stochastic variable, so that the values 
relevant to the two springs are k1 = k + ∆1 and k2 = k + ∆2, k being the target and ∆1 ≠ ∆2, (either positive 
or negative) being the two values drawn from the CDF. The source of this difference is here assumed 
to be due to the effect of the morphology only; spatially-varying over-etch defects are therefore 
disregarded. 

As the microstructure is statically indeterminate, an internal force F, to be considered the 
resultant of the residual stresses, provides a displacement of the movable mass whenever k1 ≠ k2. The 
relationship between this force and the offset displacement u away from the rest condition reads: ݑ = ∆ଵ − ∆ଶ2ሺ݇ + ∆ଵሻሺ݇ + ∆ଶሻ(1) ܨ 

where the sensitivity to the imperfections ∆1 and ∆2 of the spring stiffness is evidenced. 
In the proposed framework, each quantity in Equation (1) is a random variable. 

3. Spring Stiffness as a Function of Polysilicon Grain Morphology 

To account for the influence of film morphology on the spring stiffness, we adopt numerical 
simulations exploiting an artificial Voronoi tessellation to build the polycrystalline grain boundary 
network [12]. The whole spring should be subdivided into silicon grains, each one owning its own 
axes of elasticity. As the numerical costs of such an approach would be significantly high and the 
result would be valid for a specific spring geometry only, we introduce a square SVE, whose 
dimensions are equal to the spring nominal width. Two geometries are here handled, of size 2 × 2 
μm2 and 3 × 3 μm2 (see Figure 1). At variance with the analyses of representative volume elements 
(RVEs) [13,14], where an averaged value only is obtained for the elastic properties, with SVEs an 
estimate of the probability distribution of the mentioned properties is obtained [15]. Therefore, by 
carrying out the homogenization of the SVE elastic properties in a Monte Carlo analysis, we obtain 
the CDF for these quantities: in Figure 2, for the two SVE cases 2 × 2 μm2 and 3 × 3 μm2, the CDFs of 
the in-plane Young’s modulus are depicted. The FE analyses are run by applying two different types 
of boundary conditions (BCs), i.e., by applying a uniform stress (labelled “E-force” in the figure) or a 
uniform strain (labelled “E-disp” in the figure) BCs to bound the real results [12]. As is well known 
in the relevant literature [13], the plots in Figure 2 show that the uniform strain BCs provide an upper 
bound (orange line), while the uniform stress BCs provides a lower bound (red line) on the actual 
solution. By comparing the graphs for the two SVE sizes, it is clear that the 3 × 3 μm2 SVE is 
characterized by values closer to the mean, with a steeper distribution around it. The greater 
variability of the 2 × 2 μm2 SVE is expected, since in this latter case the grain size becomes comparable 
with the SVE dimension. 

Each numerical CDF is then fitted with a lognormal distribution ܮாሺݔሻ = 12 + 12 erf ൤ln ݔ − 2߱√ߤ ൨ (2) 
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where x is the random variable representing the Young’s modulus as an output of the SVE analyses, 
erf[·] is the Gauss error function, and μ and ߱2 are the mean and the variance to be evaluated. 

 
Figure 1. Examples of 2 × 2 μm2 stochastic volume elements (SVEs); for each silicon grain, the in-plane 
crystal lattice orientations are shown at each crystal centroid. 

(a) (b) 

Figure 2. Cumulative distribution functions (CDFs) of the homogenized in-plane Young’s modulus 
of the polysilicon film: (a) 2 × 2 μm2 SVE, (b) 3 × 3 μm2 SVE. 

4. Estimate of the Overall Spring Stiffness 

4.1. Methodology 

Once the lognormal CDFs have been set for the SVE, the geometry of a suspension spring can 
be subdivided into subsets, whose geometry is related to the SVEs dimensions, see Figure 3. We 
postulate that the overall stiffness is obtained by assigning to each subset a Young’s modulus 
extracted from the corresponding CDF. 

We consider here a simple beam geometry, with a fixed constraint at one end (no displacements 
and no rotations allowed) and a slider at the opposite end, where the motion is in the direction 
perpendicular to the beam axis only, while no rotations are allowed. By means of the principle of 
virtual work, and allowing for beam slenderness to neglect shear strains, the force P and the 
corresponding displacement u can be related to provide the ratio P/u as the beam stiffness k. 
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Figure 3. Scheme adopted for the subdivision of a spring into N subsets. A slider is imposed at the 
top end, while at the bottom end the beam is fixed. Each subset features a Young’s modulus extracted 
from the analytical CDF. 

The outcomes of this reasoning, that depends on the number of subdivisions N along the beam 
length, is: ݇ = ௉௨ = ூ௟య ൭ ଵ∑ ഗ೔ಶ೔೔ಿసభ ൱, (3) 

where: i is the index running over the subsets handled; ߰௜ is a corrective factor dependent on the 
placement of the i-th subset; I is the moment of inertia of the beam, and ݈ is the beam length (assumed 
here equal to 200 μm or 300 μm in the analyses). Since the overall stiffness is a function of the random 
variable E, then it is a random variable too. 

The actual CDF of F resulting from the production process can be estimated as well. Without 
any specific reference to real conditions, in this work we assume for F a normal distribution with a 
mean value of 10 MPa and a variance of 1.667 MPa.  

4.2. Discussion 

In Figure 4, the CDFs of the offset of the mass from the rest condition are reported, as obtained 
with Monte Carlo analyses based on Equation (1). In orange we show the CDFs obtained with the 
(analytical) lognormal distributions, while in black we provide the CDFs obtained from the SVE-finite 
element simulations. Since the mean value is the same (zero offset), the main difference between the 
two solutions is mostly due to the correct approximation of the variance of E, and therefore, of k. The 
analytical approach, which is less expensive with respect to the computational one, represents 
correctly the information obtained from the FE analyses, where the microstructure has been taken 
into account through the SVEs. Around the zero-mean value, the offset becomes positive or negative 
depending on the difference between the stiffnesses of the right and left springs. The 200 × 2 case 
(beam length equal to 200 μm, width equal to 2 μm) actually shows a larger variability of the offset 
with respect to the 300 × 3 case, as expected from the larger spread in the lognormal CDF shown in 
Figure 2a with respect to Figure 2b.  

It is worth emphasizing that the offset is generated by the scattering of the values of the spring 
stiffnesses around the mean: therefore, it depends on the standard deviations of the CDFs, and not 
on the mean values. Any stochastic method providing an offset estimate should then address the 
quantification of the variance of the random variables associated to the elastic properties, not only of 
their mean values. 
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(a) (b) 

Figure 4. Comparison between (orange) analytically-generated and (black) finite element (FE)-
generated offset CDFs for different beam sizes: (a) 200 μm × 2 μm, (b) 300 μm × 3 μm. 

5. Conclusions 

In this work, we have proposed a method to estimate the offset from the rest position of statically 
indeterminate structures of MEMS devices, featuring a moving mass held into position by two 
springs. Because of the uncertainties of the microfabrication process, a stochastic Monte Carlo method 
has been adopted to account for the heterogeneity of the material in addressing the definition of the 
elastic properties. The polycrystalline morphology has been accounted for by a Voronoi tessellation 
of statistical representative volumes, whose dimensions have been assumed equal to the spring 
width, comparable with the silicon grain size.  

The homogenized Young’s modulus, obtained with the finite element simulations, has provided 
a numerical cumulative distribution function that has been approximated by an analytical, lognormal 
distribution for each SVE size. These analytical distribution functions have been then used to describe 
the stiffness of a spring supporting the moving mass. In the presence of residual stresses, an internal 
force, to be considered as the relevant resultant and treated as a normally-distributed random 
variable, provides an offset from the rest position. Such an offset is actually found to depend on the 
variance of the stochastic Young’s modulus of the SVE, and not on its mean value. 
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