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Abstract: Thermo-elastic analyses of the High spatial Resolution Imaging Camera (HRIC), which is 
part of the spectrometers and imagers for the Mercury Planetary Orbiter BepiColombo Integrated 
Observatory SYStem suit (SIMBIO-SYS), are carried out to evaluate the effect of thermo-elastic 
deformation on the pointing error of the camera. 
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1. Introduction 

BepiColombo is a planned European-Japanese space mission to Mercury [1] which was 
successfully launched on 19 October 2018. The mission includes the orbiter Mercury Planet Orbiter 
(MPO) developed under ESA’s supervision (European Space Agency) which is carrying the suite 
SIMBIO-SYS [2] (Spectrometers and Imagers for MPO BepiColombo Integrated Observatory 
SYSstem) to whom all the imaging operations and part of the spectroscopic observations are assigned. 
The suite consists of three optical instruments operating on different channels mounted on a common 
optical bench, in particular, the optical instrument named HRIC [3,4] (High spatial Resolution 
Imaging Camera) will provide high-resolution images of planetary surface targets such as craters, 
lava flows, tectonic structures, etc., which are strategic for the study of the interaction among 
geological, geophysical and geochemical processes as well as the effects of impact processes. HRIC 
will operate in a space environment characterized by severe thermal loads, therefore, it is clear that 
the thermal stability of the camera will play a fundamental role in achieving the mission 
requirements. In this work, we carry out thermal-mechanical analyses. As the first step, we develop 
a thermal model for predicting the range of temperatures that the camera will endure in orbit, then 
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we develop a mechanical model for the evaluation of the thermal distortions. Finally, the optical 
performance is evaluated in terms of pointing error. 

2. HRIC Instrument 

HRIC telescope was accurately designed in order to satisfy the requirement of high-resolution 
images over the covered field of view of 1.47°, with a panchromatic filter and 3 broadband filters in 
the spectral range 400–900 nm. The optical design is based on a catadioptric concept, where the layout 
consists of an optimized Ritchey—Chrétien configuration with a dedicated corrector of 3 refractive 
elements. The two mirrors are characterized by a hyperboloid profile that, together with the corrector 
lenses, leads to having a focal length of 800 mm, while the pupil aperture located on the primary 
mirror has a diameter of about 90 mm. A 2048 × 2048 pixels SiPIN Complementary Metal Oxide 
Semiconductor (CMOS) sensor with a pixel size of 10 µm is used for capturing the images. In Figure 
1 the section drawing of the camera is displayed so that the layout and the main components of the 
telescope can be distinctly seen. The camera is nadir pointing and will operate in a polar orbit with a 
Periherm altitude of 480 km and an Apoherm altitude of 1500 km.  

 
Figure 1. Main components of the HRIC telescope. 

3. HRIC Model 

In the following we introduce the thermal and mechanical models implemented for evaluating 
the thermo-elastic distortions, all models have been obtained by mainly extracting the middle 
surfaces from the CAD (Computer-Aided Design) camera model, except for the two mirrors which 
are represented by the reflective surfaces. At this stage of preliminary analyses, the corrector lenses 
are not modeled. 

3.1. Thermal Model 

The camera is discretized with lumped-based 2D elements by means of the commercial software 
ESATAN-TMS [5,6]. The geometrical model is displayed in Figure 2 with the associated list of bulk 
materials. 

 
Figure 2. Geometrical model with the list of bulk materials adopted in the commercial software 
ESATAN-TMS. 
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The thermal properties of the bulk materials are given in Table 1, while in Table 2 the thermal-
optical properties of the coatings are given. The transient analysis is performed for the hottest case of 
the thermal space environment, which is at the Perihelion position of Mercury where the illuminated 
surface reaches a temperature of 688 K and the dark side 100 K. An albedo coefficient of 0.12 is 
assumed. The S/C internal environment, which contains the camera, is kept at the boundary 
temperature of 50 °C, while the baffle which is conductively decoupled from the camera is 
conductively linked to a node which is set at a boundary temperature of 65 °C [7]. The node represents 
the thermal interface of the S/C bracket for the mounting of the baffle. The electrical heat dissipation 
coming from the Proximity Electronics and the Detector (see Figure 1) are neglected since cold fingers 
provided by S/C are adopted for removing the heat. Moreover, the heat flux between the S/C optical 
bench where HRIC is fixed and the camera can be neglected. 

Table 1. Thermal properties of the bulk materials used in the thermal model. 

Material Density [kg/m3] Specific Heat [J/kg∙K] Conductivity [W/m∙K] 
Titanium 6Al4V 4430 526.3 6.7 

INVAR 8050 515 10.15 
Honeycomb composite panel 1558 725.8 22.4/23.6/1.46 1 

Glass BK7G18 2520 820 1.19 
Glass Fused Silica HOQ310 2200 772 1.42 
Aluminum Alloy RSA6061 2800 850 130 

1 Out-of-plane thermal conductivity. 

Table 2. Thermal-optical properties of the coatings. 

Coating ϵ 𝝉𝑰𝑹  𝝆𝑰𝑹𝒅  𝝆𝑰𝑹𝒔  α 𝝉𝒔  𝝆𝒔𝒅 𝝆𝒔𝒔 
RSA6061 aeroglaze (internal baffle front ring) 0.85 0 0.075 0.075 0.96 0 0.02 0.02 

RSA6061 polished (internal baffle) 0.05 0 0.05 0.9 0.12 0 0.03 0.85 
RSA6061 Alodine (external baffle) 0.15 0 0.425 0.425 0.35 0 0.325 0.325 

Coating Mirrors 0.02 0 0 0.98 0.1 0 0 0.9 
TIRD glass (inward) 0.96 0 0.04 0 0 1 0 0 

TIRD glass (outward) 0.25 0 0.75 0 0.2 0.8 0 0 
INVAR 0.31 0 0.69 0 0 0 1 0 

Composite panel 0.70 0 0.30 0 0 0 1 0 
MLI cover 0.05 0 0.95 0 0.15 0 0.85 0 

S/C internal environment (black body) 1 0 0 0 1 0 0 0 

3.2. Mechanical Model 

The camera is discretized with 2D linear shell elements, with a total of 521,797 nodes and 88,579 
elements by using the commercial FEM (Finite Element Method) software Patran/MSC Nastran. The 
model is implemented without the baffle, being this one mechanically decoupled from the camera. 
Table 3 gives the mechanical properties of the used materials. Static analyses are carried out by 
imposing as boundary condition the temperature at each node of the mechanical mesh, in this regard, 
in-house MATLAB codes have been written for interpolating the boundary temperature field given 
the temperature field computed in ESATAN-TMS. Moreover, fixed constraints are applied to the 4 
holes at the bottom of the composite box. 

Table 3. Mechanical properties of the materials adopted in the mechanical model. 

Material Young’s Module [GPa] Poisson’s 
Coefficient 

Thermal Expansion 
Coefficient [10-6/K] 

Titanium 6Al4V 113.8 0.342 8.6 
INVAR 148 0.28 1.3 

Honeycomb composite panel 19.9/22.4 0.2 9.52/11.6 
Glass BK7G18 82 0.205 7 

Glass Fused Silica HOQ310 70 0.17 0.51 
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4. Results 

Several orbital positions are simulated in order to capture the highest temperature reached on 
the camera, in Figure 2a the contour plot of the temperature for such a case is displayed. The highest 
temperature of 87.3 °C is reached on the external baffle ring while approximately the average 
temperature in the camera is kept constant at about 58 °C with thermal gradients throughout the 
camera of few degrees. This result was foreseeable in consequence of an accurate thermal design of 
the camera, especially the Stravroudis baffle configuration for rejecting toward the sky-background 
the incoming radiation misaligned with respect to the optical axis and the TIRD filter [8] for cutting 
the infrared radiation coming mainly from the planet. Figure 2b shows the deformed camera with 
the contour plot of the displacements due to the thermo-elastic deformations, with a maximum 
displacement of 37.4 µm for M1 and 37.9 µm for M2.  

 
Figure 2. (a) Contour plot of the temperature computed at the hottest orbital position, (b) deformed 
telescope with the contour plot of the displacements. 

The effect of piston/tilt of the two mirrors on the pointing error of the camera is evaluated by 
decomposing their deformation with the use of Zernike polynomials, see [8] for more details about 
the optical prescriptions of HRIC layout. The PSF (Point Spread Function) displayed in Figure 3 
shows how the peak of luminous intensity is located at a distance of about 3.24 µm from the center 
(the ideal condition of optical alignment is at 20 °C), which is enclosed within the central pixel of the 
optical sensor (the pixel has the size of 10 µm). It can, therefore, be concluded that the pointing error 
can be neglected in the Perihelion MPO orbit. 

 
Figure 3. PSF on-axis, the square patch has a size of 99.2 µm which is about an area of 10 × 10 pixel of 
the detector (the scale of the color-map is linear and normalized to peak of PSF). 

5. Conclusions 

Thermo-mechanical analyses of HRIC telescope are carried out in order to evaluate the effects 
of thermal-elastic deformations on the pointing error of the camera. In particular, we aim to evaluate 
it when HRIC is operating in the worst thermal environmental condition, which is at Perihelion orbit. 
The results show how the piston/tilt movement of the primary and secondary mirror introduces a 
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slight deviation of the peak luminous intensity from the center of the sensor, however, the pointing 
error can be neglected since the peak luminous intensity lies within the central pixel of the sensor. 
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