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Abstract: The IMPECAF is a research project that started at the end of 2018 and aims to deepen the 
knowledge on weather extremes, particularly droughts and heat waves, which affect agricultural 
and forest ecosystems of the Iberian Peninsula. Despite these events presenting different temporal 
scales, their simultaneous occurrence can intensify the observed impacts. In addition, these impacts 
may extend over large areas affecting different ecosystems. This project aims at transferring 
knowledge on fundamental research in meteorology for the agricultural and forestry sectors, and it 
is expected that the results may be an input in the decision-making process of farmers. To achieve 
this aim, appropriate measures will be developed to mitigate the impact of these extreme weather 
events in the forestry and agricultural sectors. This will be followed by an approach that ensures the 
involvement of stakeholders since the beginning of the project and even after its conclusion. 
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1. Introduction 

In recent decades, changes in climate have caused impacts on natural and human systems on all 
continents and across the oceans [1]. Nevertheless, increases in climate variability have a greater 
effect on society than do changes in mean climate because it is more difficult to adapt to changes in 
extremes [2]. Europe was struck by record breaking extreme events, namely the mega-heat waves of 
2003 in Europe [3] and 2010 in Russia [4,5], and the large droughts in southern Europe in 2005 [6,7], 
2012 [8] and 2016/2017 [9]. The last major assessments performed by the IPCC on extreme events [1,10] 
confirm that a changing climate can lead to changes in the frequency, intensity, spatial extent, 
duration, and timing of weather and climate extremes that combined with larger exposure can result 
in unprecedented risk to humans and ecosystems [1]. Several studies have also stressed the role 
played by recent climate change in the increased likelihood of occurrence of some of these extremes 
[11–14]. 

Risk assessments generally focus on univariate statistics even when multiple stressors are 
considered. For example, concurrent extreme droughts and heat waves can substantially affect 
vegetation health, prompting tree mortality, and thereby facilitating insect outbreaks and fires [15]. 
In a future climate, elevated CO2 may buffer effects of drought on vegetation productivity by 
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increasing water use efficiency [16]. In addition, droughts have the potential to trigger and intensify 
fires [17] and can cause severe economic damage [18], with no time for early-warnings in the case of 
flash-droughts [18]. 

Thus, evidence on observed impacts as well as to climate change projected impacts on terrestrial 
ecosystems are mounting [5,7], suggesting significant vulnerability of both forest and agricultural 
ecosystems, namely being key drivers for vegetation stress [7] and potentially responsible for crop 
yield and wood losses [19,20]. So, continuous monitoring of vegetation activity and a reliable 
estimation of droughts and heat waves’ impacts is crucial to reduce potential risks in the Iberian 
Peninsula. 

Agricultural and forest risk management aims to mitigate crop and forest growth losses [21–24], 
highlighting the severe damages that can occur in the case of a concurrent effect of high temperature 
[22]. Hence, the predictability and forecasting of extreme weather events play a major role in risk 
management to promote adaptation and mitigation measures that contribute to minimize the impacts 
resultant from these extreme events.  

Traditionally, local risk management strategies focus only on short-term climatic events without 
considering long-term climate changes [1], such as vegetation and soil moisture changes. General 
Circulation Models (GCMs) provide a powerful tool to evaluate recent trends in a broader temporal 
context and to investigate the underlying mechanisms [25]. Nevertheless, currently used GCMs have 
coarse horizontal resolutions, being unable to represent many land-atmosphere interactions and 
systems that drive regional and local climate variability [25]. Alternatively, the Regional Climate 
Models (RCMs), namely the Weather Research and Forecasting model (WRF, 2 km to 9 km 
resolutions), are physically consistent with regional and local circulations at finer horizontal and 
temporal scales [25,26].  

2. Main Goals 

The main goal of IMPECAF is to enhance the knowledge on Hot and Dry meteorological 
Extremes (HDE, heat waves, droughts, and flash-droughts) which affect the agricultural and forest 
ecosystems of the Iberian Peninsula. Despite the different temporal scales of these HDE, the 
concurrent or lagged effect of more than one of these phenomena may intensify the observed impacts 
[1]. Moreover, their impacts can extend over large regions [3,5], differently affecting varied 
ecosystems [7,14,17,19,20]. Despite differences in the spatial-temporal context on which each HDE 
occur [1], they will all be treated from a multidisciplinary perspective considering past, present and 
future states of climate. 

IMPECAF plans different actions to assess the risk of the impact of HDE on crop and wood losses, 
making use of currently available meteorological, hydrological and remote sensing data. Hence, 
IMPECAF will use drought indices which are useful for drought monitoring and early warning and 
will integrate short-and medium-term meteorological predictions and numerical simulations for 
better drought prediction. Moreover, IMPECAF will also assess the role of vegetation communities 
and carbon storage by ecosystems on drought and heat wave impacts. These tasks will allow 
designing efficient risk models and produce information which will help in risk mitigation and 
insurance planning. 

IMPECAF is organized into three work packages (Figure 1) encompassing seven tasks, and it 
uses a trans-disciplinary approach that includes innovative in-depth studies that combine drought 
and heat wave analyses at the Iberian scale. The project will rely on the accumulated experience of 
the project team on multivariable impact analysis of extreme events such as the recent mega-
European heat waves of 2003 [3,5] and 2010 [4,5] or the outstanding droughts of 2005 and 2012 in the 
Iberian Peninsula [6–8].  

Finally, the outcomes of the project are expected to be available to the scientific community and 
general public, helping farmers, producers and insurance companies on the process of decision-
making. This will be achieved through the development of appropriate measures for HDE mitigation 
in the forestry and agriculture sectors, both prior and during HDE occurrence. A bottom-up approach 
will be followed to guarantee stakeholder involvement from the start of the project and also after its 
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completion, which will be ensured by the connection between the IPBeja and two Alentejo’s 
agriculture associations.  

This project will benefit from the close collaboration with the stakeholders and end-users to 
ensure an adequate acceptance of the new products developed. 

 
Figure 1. IMPECAF’s approach. 

3. Results 

3.1. Crops’ Sensitivity and Adaptive Capacity to Drought Occurrence 

In the context of sustainable agricultural management, particularly under climate change, 
monitoring of drought events and assessing the vulnerability of agriculture to drought plays a crucial 
role [27]. Drought episodes are very frequent in the Iberian Peninsula and an increase of frequency 
of these extreme events are expected in near future [28,29].  

In this work a principal component analysis was performed based on information regarding the 
vulnerability components of exposure, sensitivity and adaptability of the agricultural system to 
drought with the final goal of generating maps of vulnerability of agriculture to drought in mainland 
Portugal. 

It can be concluded that the Alentejo is an area of special attention because it is the area that has 
a higher vulnerability of crops to drought and that has the most agricultural area (Figure 2). The 
method used is a fully statistical method that presents results according to a prior knowledge of the 
region and the data used. 

 
Figure 2. Classes of vulnerability of the main crops to drought. 
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3.2. B. Identification of Fire Weather Types Associated to the Occurrence of Large Fires in Iberia 

The Mediterranean region is characterized by the frequent occurrence of summer wildfires 
representing an environmental and socioeconomic burden. Some Mediterranean countries (or 
provinces) are particularly prone to Large Fires (LF), namely Portugal, Galicia, Greece, and southern 
France [30–32]. On the other hand, the Mediterranean basin corresponds to a major hotspot of climate 
change, and anthropogenic warming is expected to increase the total burned area due to fires in 
Mediterranean Europe [33]. 

Here, we propose to classify summer large fires for four regions of Iberia according to their local-
scale weather conditions (i.e., temperature, relative humidity, wind speed) and fire danger weather 
indices (Figure 3). Composite analysis was used to investigate the impact of local and regional climate 
drivers at different time scales, and to identify distinct climatologies associated to the occurrence of 
LF in the Iberian Peninsula. The regions present significantly different values of burned area from 
which a large fire is considered. 

 

 
Figure 3. Aggregated study areas (top) and corresponding percentage of burned areas (BA) in the 
summer months. 

The application of the cluster analysis to aggregate fire day standardized anomalies for the 
variables identified by the PCA (Principal Component Analysis) can be observed in Figure 4, showing 
that in all four regions, three distinct Fire Weather Types were identified. The FWT_1, depicted in 
blue, is characterised by high wind speed anomalies (above one std). The FWT_2, in green, is 
represented by anomalies of the various variables within the normal (bellow one std). Finally, FWT_3, 
in red, is characterized by high positive temperature anomalies (above one std) and strong negative 
relative humidity anomalies (above one std). However, the value of the anomalies that distinguish 
each FWT is different for the four regions. 
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Figure 4. Composites of the standardized anomalies of the meteorological variables (temperature, 
relative humidity and zonal wind) of the fire day associated with the three Fire Weather Types, 
FWT_1 (blue), FWT_2 (green) and FWT_3 (red). 

4. Conclusions 

The assessment of the impact of extreme weather conditions, in particular the occurrence of 
droughts and heat waves, in the production of cereals is of great importance, since the extreme 
episodes in the Iberian Peninsula have been more frequent and more intense, having impacts on 
vegetation. In a context of climate change, the sustainable production of natural resource, in 
particular as regards the plant ecosystems, is a challenge that urge to present solutions. In this sense, 
the modelling of agricultural and forestry biomass productivity is crucial, aiming at sustainable and 
informed management, in particular regarding mitigation or adaptation measures to frequent 
extreme events. At the same time, the modelling of forestry and agriculture biomass allows access to 
existing insurance systems. Risk models for agriculture are based on the experience and know-how 
of the team members in crop modelling, and statistical methods. Moreover, agro-meteorological 
projects use data freely available, including remote detection data of high temporal resolution. The 
models will integrate a tool, available online, easy to use and to interpret, allowing a supported 
decision by farmers, foresters, managers, civil protection, among others.  

We expect to be able to develop a dialogue and foster linkages between the scientific community, 
policy makers, and end-users within the context of IMPECAF. 
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