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Abstract: We present a novel implementation of the adaptively annealed thermodynamic integration
technique using Hamiltonian Monte Carlo (HMC). Thermodynamic integration with importance
sampling and adaptive annealing is an especially useful method for estimating model evidence
for problems that use physics-based mathematical models. Because it is based on importance
sampling, this method requires an efficient way to refresh the ensemble of samples. Existing
successful implementations use binary slice sampling on the Hilbert curve to accomplish this task.
This implementation works well if the model has few parameters or if it can be broken into separate
parts with identical parameter priors that can be refreshed separately. However, for models that are
not separable and have many parameters, a different method for refreshing the samples is needed.
HMC, in the form of the MC-Stan package, is effective for jointly refreshing the ensemble under a
high-dimensional model. MC-Stan uses automatic differentiation to compute the gradients of the
likelihood that HMC requires in about the same amount of time as it computes the likelihood function
itself, easing the programming burden compared to implementations of HMC that require explicitly
specified gradient functions. We present a description of the overall TI-Stan procedure and results for
representative example problems.

Keywords: model comparison; MCMC; thermodynamic integration; HMC

1. Introduction

Thermodynamic integration (TI) is a numerical technique for evaluating model evidence integrals.
The technique was originally developed [2] to estimate the free energy of a fluid. Various improvements
and changes have been made over the decades, and the incarnation of the technique that our method
is based on is the adaptively-annealed, importance sampling-based method described by Goggans
and Chi [3]. Their implementation follows John Skilling’s BayeSys [4], and both make use of Binary
slice sampling (BSS) and the Hilbert curve to complete the implementation. This article proposes a
modification of this method that uses PyStan [5,6] and the No U Turn Sampler (NUTS) [7] instead
of BSS and the Hilbert curve. This article is an adaptation of portions of the first author’s doctoral
dissertation ([1] Chapter 3). A Python 3 implementation of this method by the authors can be found
on GitHub (https://github.com/rwhender/ti-stan) [8].

1.1. Motivation

The family of adaptively-annealed TI methods are important for solving model comparison
problems in engineering, where we frequently need to evaluate complex physics-based mathematical
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models. TI methods with fixed annealing schedules (e.g., [9,10]) are useful for solving more traditional
statistics problems, but tend to fail with the complex models that arise in engineering problems. TI
methods that use BSS on the Hilbert curve are useful for a large set of problems; however, these
methods see diminishing returns when the number of model parameters grows somewhat large (> 10
or so). These performance issues can be mitigated if the model equation can be decomposed into
additive components with identical form and equivalent joint priors on their parameters. However,
for problems with many model parameters and with model equations that cannot be decomposed, a
different class of methods is required.

1.2. Background

From Bayes’ theorem, for model vector M, data vector D, model parameter vector Θ, and prior
information I, the model evidence is

p(D|M, I) =
∫

p(D|Θ, M, I)p(Θ|M, I)dΘ. (1)

Here we introduce an inverse temperature parameter, β, that will control how much the likelihood
influences the evidence value,

p(D|M, β, I) =
∫

[p(D|Θ, M, I)]β p(Θ|M, I)dΘ. (2)

The full derivation is omitted here. The result is the thermodynamic integral form of the model
evidence,

log p(D|M, β, I) = −
∫ 1

0
〈EL(Θ)〉β dβ , (3)

where the energy term is defined as the negative log-likelihood:

EL(Θ) = − log p(D|Θ, M, I). (4)

The integral in (3) usually cannot be evaluated analytically. For problems with relatively simple
models, a fixed temperature ladder can be used, and Markov chain Monte Carlo (MCMC) can be
used to estimate the expected energy at each temperature. However, for the class of problems we
are concerned with, an approach in which the subsequent temperature is computed based on the
conditions observed in the current step is necessary. This process is known as adaptive annealing. The
general procedure as described by [3] is as follows:

1. Start at β = 0 where p(Θ|M, D, β, I) = p(Θ|M, I), and draw C samples from this distribution
(the prior).

2. Compute the Monte Carlo estimator for the expected energy at the current β,

〈EL(Θ)〉β ≈
1
N

C

∑
t=1

EL(Θt) , (5)

where Θt is the current position of the t-th Markov chain.
3. Increment β by ∆βi, where

∆βi =
log

max wj
min wj

max EL(Θi)−min EL(Θi)
, (6)

j is the index on the chains, wj is the weight associated with chain j, and

wj = exp[−∆βiEL(Θj)]. (7)
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4. Re-sample the population of samples using importance sampling.
5. Use MCMC to refresh the current population of samples. This yields a more accurate sampling of

the distribution at the current temperature. This step can be easily parallelized, as each sample’s
position can be shifted independently of the others.

6. Return to step 2 and continue until βi reaches 1.
7. Estimate (3) using quadrature and the expected energy estimates built up using (5).

In this procedure, steps 3 and 4 are closely connected. In order to refresh the sample population
most effectively, the importance sampling step should discard and replace at most 1 sample per
temperature. New temperatures are chosen in a way that encourages this behavior. The term log

max wj
min wj

is a method parameter that can be set to make the adaptive annealing process more or less aggressive.
Values of this parameter only slightly greater than one encourage a slow annealing, while higher
values encourage a faster process.

2. Materials and Methods

The main innovation of this article relates to the implementation of step 5. As of Summer 2018,
a survey of the available modern implementations of MCMC methods indicated that MC Stan (or
simply Stan) [5], was the gold standard for general purpose MCMC. Stan uses NUTS [7] as the
basis for its sampling functions. NUTS is based on Hamiltonian Monte Carlo (HMC) [11], which
uses the gradient of the log-likelihood function to more efficiently explore the posterior distribution.
NUTS improves upon HMC by automatically choosing optimal values for HMC’s tunable method
parameters. NUTS has been shown to sample complex distributions effectively. We sought to build an
improved thermodynamic integration implementation by using Stan instead of binary slice sampling
and leapfrog sampling to refresh the sample population at each temperature within TI. The result,
Thermodynamic integration with Stan (TI-Stan), is described in this section.

The TI-Stan algorithm is shown in Algorithm 1.
Our implementation is in Python, so we made use of the PyStan interface to Stan [6]. Stan defines

its own language for defining statistical models, which allows it to efficiently compute the derivatives
needed for HMC via automatic differentiation. For a particular problem, it is therefore necessary
to write a Stan file that contains the Stan-formatted specification of the model, in addition to the
pure-Python energy functions necessary for TI with BSS. Once one is familiar with the simple Stan
language, this additional programming cost becomes trivial compared to the time savings achieved by
using this method instead of BSS.
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Algorithm 1 Thermodynamic integration with Stan

1: procedure TI(P, S, C, W, data)
2: Inputs: P–Number of parameters, S–Number of Stan iterations per temperature, C–Number of

chains, W–Ratio to control adaptive annealing, data–Data
3: for m← 1, C do
4: for j← 1, P do
5: αm

j ← RAND(0, 1)
6: end for
7: E∗m ← ENERGY(αm, data)
8: end for
9: i← 1

10: Compute 〈E∗〉i
11: β1 ← min{log(W)/[max(E∗)−min(E∗)], 1}
12: w← exp(−β1E∗)
13: IMPORTANCESAMPLING(w, α, E∗, C)
14: while βi > 0 and βi < 1 do
15: for m← 1, C do
16: STANSAMPLING(αm, E∗m, C, P, S, βi, data)
17: end for
18: i← i + 1
19: ∆β← log(W)/[max(E∗)−min(E∗)]
20: βi ← min(βi−1 + ∆β, 1)
21: if βi−1 + ∆β > 1 then
22: ∆β← 1− βi−1
23: end if
24: w← exp(−∆βE∗)
25: IMPORTANCESAMPLING(w, α, E∗, C)
26: end while
27: Estimate (3) using trapezoid rule and {βi} and {〈E∗〉i}
28: end procedure

2.1. Tests

We use two test problems to demonstrate TI-Stan in practice. These test problems are
described below.

2.1.1. Twin Gaussian Shells

The first example is the twin Gaussian shell problem from [12]. In [12], the authors present results
for this problem in up to 30 dimensions. Handley, et al. [13] also use this problem in 100 dimensions
to test their algorithm. This problem presents a few interesting challenges. Because the likelihood
takes the form of a thin, curved density whose mass centers on a hyper-spherical shell, MCMC moves
are difficult to make efficiently. The bimodal distribution is also challenging to sample effectively.
Finally, the examples we explore are high-dimensional to the point that standard numerical integration
techniques would be useless.

The likelihood function in the twin Gaussian shells problem takes the form,

L(Θ) =
1√

2πw1
exp

[
− (|Θ− c1| − r1)

2

2w2
1

]
+

1√
2πw2

exp

[
− (|Θ− c2| − r2)

2

2w2
2

]
. (8)

Following [12], we set the parameters as follows: w1 = w2 = 0.1, r1 = r2 = 2, c1 = [−3.5, 0, · · · , 0]T ,
and c2 = [3.5, 0, · · · , 0]T . We use a uniform prior over the hypercube that spans [−6, 6] in each
dimension.
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2.1.2. Detection of Multiple Stationary Frequencies

For the second test, we estimate the number of stationary frequencies present in a signal. This
problem is similar to the problem of multiple stationary frequency estimation in [14, Chapter 6], with
the additional task of determining the number of stationary frequencies present. Differences among
log-evidence values for models containing either the most probable number of frequencies or more
tend to be small, meaning that a precise estimate of these log-evidence values is essential to the task of
determining the most probable model.

Each stationary frequency (j) in the model is determined by three parameters: the in-phase
amplitude (Aj), the quadrature amplitude (Bj), and the frequency ( f j). Given J stationary frequencies,
the model at time step ti takes the following form:

g [ti; Θ] =
J

∑
j=1

Aj cos
(
2π f jti

)
+ Bj sin

(
2π f jti

)
, (9)

where Θ is the parameter vector

Θ =
[
A1 B1 f1 · · · AJ BJ f J

]T .

For the purposes of this test the noise variance used to generate the simulated data is known, hence
we use a Gaussian likelihood function,

L(Θ) =
K

∏
i=1

exp

{
− [g (ti; Θ)− di]

2

2σ2

}
, (10)

for K simulated data di and noise variance σ2. The log-likelihood function is then

logL(Θ) = −
K

∑
i=1

[g (ti; Θ)− di]
2

2σ2 . (11)

Each model parameter is assigned a uniform prior distribution with limits as shown in Table 1.

Table 1. Prior bounds for multiple stationary frequency model parameters.

Lower Bound Upper Bound

Aj −2 2
Bj −2 2
f j 0 Hz 6.4 Hz

Our test signal is a sum of two sinusoidal components, and zero-mean Gaussian noise with
variance σ2 = 0.01. This signal is sampled at randomly-spaced instants of time, in order to demonstrate
that this time-domain method does not require uniform sampling to perform spectrum estimation.
Bretthorst [15] demonstrates that the Nyquist critical frequency in the case of nonuniform sampling is
1/2∆T′, where ∆T′ is the dwell time. The dwell time is not defined for arbitrary-precision time values
as used in this example, so we must choose another limiting value. A more conservative limit is given
by 1/10∆Tavg, where ∆Tavg is the average spacing between time steps, 1/64 s. This formulation yields
a prior maximum limit of 6.4 Hz, as shown in Table 1. The parameters used to generate the simulated
data are shown in Table 2.
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Table 2. Parameters used to generate simulated signal.

j Aj Bj fj (Hz)

1 1.0 0.0 3.1
2 1.0 0.0 5.9

3. Results

For these tests, performance is compared among the Thermodynamic integration with binary slice
sampling (TI-BSS) method and the TI-Stan method. The settings used for TI-BSS are shown in Table 3,
while the settings used for TI-Stan are shown in Table 4. For each example, the user-defined annealing
control constant W was set to both 1.5 and 2.0. For the box-plots in this section, the middle line
represents the median value, the box is bounded by the upper and lower quartiles, and the whiskers
extend to the range of the data that lies within 1.5 times the inter-quartile range. Any data points past
this threshold are plotted as circles.

Table 3. Parameters for TI-BSS examples.

Parameter Value Definition

S 200 Number of binary slice sampling steps
M 2 Number of combined binary slice sampling and leapfrog steps
C 256 Number of chains
B 32 Number of bits per parameter in SFC

Table 4. Parameters for TI-Stan examples.

Parameter Value Definition

S 200 Number of steps allowed in Stan
C 256 Number of chains

These results were generated on a Google Cloud instance with 32 virtual Intel Broadwell CPUs
and 28.8 GB of RAM.

First, we present results for the twin Gaussian shells distribution with 10 dimensions. A box-plot
summarizing the log-evidence estimates over 20 runs each for TI-Stan and Thermodynamic integration
with binary slice sampling and the Hilbert curve (TI-BSS-H) and for each value of W is shown in Figure
1a. A box-plot summarizing the run times over 20 runs each for the TI methods is shown in Figure 1b.
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Figure 1. Twin Gaussian shell test results. (a) Box-plot of log-evidence for the 10-D twin Gaussian shell
problem for TI-Stan and TI-BSS-H; (b) Box-plot of run time in seconds for the 10-D twin Gaussian shell
problem for TI-Stan and TI-BSS-H.
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Second, we present results for the detection of multiple stationary frequencies problem. Box-plots
of log-evidence values for a model assuming one, two, and three frequencies present are shown in
Figures 2a, 3a, and 4a. For the models with one and three frequencies present, results are shown
for TI-Stan, TI-BSS-H, and Thermodynamic integration with binary slice sampling and the Z-order
curve (TI-BSS-Z) [16]. For the model with two frequencies present (the model also used to generate
the test signal), results for TI-BSS-Z are not shown. For this model, TI-BSS-Z ended early here and did
not arrive at a reasonable result. Box-plots of the run time for models assuming one, two, and three
frequencies present are shown in Figures 2b, 3b, and 4b.
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Figure 2. MSF model with J = 1 results. (a) Box-plot of log-evidence for the one stationary frequency
model for TI-Stan, TI-BSS-H, and TI-BSS-Z, for two values of W; (b) Box-plot of run time for the one
stationary frequency model for TI-Stan, TI-BSS-H, and TI-BSS-Z, for two values of W.
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Figure 3. MSF model with J = 2 results. (a) Box-plot of log-evidence for the two stationary frequency
model for TI-Stan and TI-BSS-H, for two values of W; (b) Box-plot of run time for the two stationary
frequency model for TI-Stan and TI-BSS-H, for two values of W.
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Figure 4. MSF model with J = 1 results. (a) Box-plot of log-evidence for the three stationary frequency
model for TI-Stan, TI-BSS-H, and TI-BSS-Z, for two values of W; (b) Box-plot of run time for the three
stationary frequency model for TI-Stan, TI-BSS-H, and TI-BSS-Z, for two values of W.

4. Discussion

Regarding the twin Gaussian shells test, the analytical log-evidence for this distribution [12]
is −14.59. None of the configurations tested actually reached that value (Figure 1a, but the runs
using W = 1.5 got closest, suggesting that a value of W closer to 1 would perhaps approach the
correct value more closely. Figure 1b shows that the run time drastically increases as W approaches
1. It also shows that TI-BSS-H takes about 6 times longer, on average, than TI-Stan to compute its
estimate of the log-evidence. According to Figure 1a, the two methods have comparable accuracy and
precision, so this difference in run time illustrates the difficulty the Hilbert curve-based method has
with distributions of high dimension.

Regarding the detection of multiple stationary frequencies test, there are no analytical log-evidence
values available. We argue that a method is successful if the model used to generate the data clearly
has the highest log-evidence, with a good margin between it and the log-evidence for the other models.
Figures 2a and 4a show some significant disagreement among the various methods for the “wrong”
models (those with one and three frequencies), but Figure 3a shows that the methods are in much
closer agreement for the two frequency model. For TI-Stan and TI-BSS-H and for both values of W,
the two frequency model is clearly the maximum-log-evidence choice. Even with the variations in the
runs, the results do not overlap at any point from model to model, and the closest model-to-model
margins are all greater than 2.3, which corresponds to an odds of 10.

In Figure 2b, TI-Stan has the greatest run time for both values of W, suggesting that its adaptive
sampling process had trouble efficiently sampling distributions based on this high-error model.
TI-BSS-H was much faster, and TI-BSS-Z was faster still. In Figure 3b, the run times of TI-Stan
and TI-BSS-H are comparable. This suggests that TI-Stan was able to more effectively sample the
distribution based on the lower-error model. Figure 4b shows a similar pattern in the run times
to Figure 2b. The fact that this model is able to fit the noise in the data (yielding especially sharp
distributions) and the fact that the distribution is increasingly multi-modal as the number of frequencies
increases may explain why TI-Stan took a long time to compute a result here.

These preliminary results indicate that TI-Stan is a promising method for computing model
evidence for problems with complex physics-based mathematical models. Results for further
problems, including the twin Gaussian shell problem with up to 100 dimensions, can be found
in ([1] Chapter 3). Future work could further evaluate this method’s usefulness by solving real complex
model comparison problems in engineering.
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Abbreviations

The following abbreviations are used in this manuscript:

TI Thermodynamic integration
BSS Binary slice sampling
TI-Stan Thermodynamic integration with Stan
TI-BSS Thermodynamic integration with binary slice sampling
TI-BSS-H Thermodynamic integration with binary slice sampling and the Hilbert curve
TI-BSS-Z Thermodynamic integration with binary slice sampling and the Z-order curve
HMC Hamiltonian Monte Carlo
NUTS No U Turn Sampler
MCMC Markov chain Monte Carlo
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