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Abstract: 3D X-ray Computed Tomography (CT) is used in medicine and non-destructive testing
(NDT) for industry to visualize the interior of a volume and control its healthiness. Compared to
analytical reconstruction methods, model-based iterative reconstruction (MBIR) methods obtain
high-quality reconstructions while reducing the dose. Nevertheless, usual Maximum-A-Posteriori
(MAP) estimation does not enable to quantify the uncertainties on the reconstruction, which can
be useful for the control performed afterwards. Herein, we propose to estimate these uncertainties
jointly with the reconstruction by computing Posterior Mean (PM) thanks to Variational Bayesian
Approach (VBA). We present our reconstruction algorithm using a Gauss-Markov-Potts prior model
on the volume to reconstruct. For PM calculation in VBA, the uncertainties on the reconstruction are
given by the variances of the posterior distribution of the volume. To estimate these variances in our
algorithm, we need to compute diagonal coefficients of the posterior covariance matrix. Since this
matrix is not available in 3D X-ray CT, we propose an efficient solution to tackle this difficulty, based
on the use of a matched pair of projector and backprojector. In our simulations using the Separable
Footprint (SF) pair, we compare our PM estimation with MAP estimation. Perspectives for this work
are applications to real data as improvement of our GPU implementation of SF pair.

Keywords: Computed Tomography, Gauss-Markov-Potts, variational Bayesian approach, Separable
Footprint

1. Introduction

In 3D X-ray CT, MBIR methods enforce a prior model on the volume to image, so the reconstruction
quality is enhanced compared to filtered backprojection (FBP) methods [1], and the dose can be
reduced [2]. Smoothing and edge-preserving priors, such as total variation regularization [3,4],
Gauss-Markov-Potts prior model [5] or sparsity-inducing priors in a wavelet or learnt transform
domain [6–8], have provided promising results for the development of MBIR methods in medicine
and NDT for industry. Due to the high dimension and to the fact that the reconstruction problem
is ill-posed [9], exact estimation of the unknown volume is not available [10]. As a consequence,
uncertainties on the estimation are a desirable tool for the analysis of the reconstructed volume.

After the reconstruction has been performed, an iterative method to estimate the uncertainties is
proposed in [10]. Nevertheless, its high computational cost makes it only applicable to a few voxels
of interest [10]. Since MBIR methods mostly estimate the maximum of the posterior distribution of
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the unknowns (MAP), confidence regions can be computed following the reconstruction [11] but this
procedure is difficult to apply for discrete-continuous channels estimation, such as joint reconstruction
and segmentation [5]. For this reason, in this paper, we propose to compute Posterior Mean (PM)
rather than MAP. For PM estimator, the uncertainties on the reconstruction correspond to the variances.
Our algorithm estimates these variances jointly with the reconstruction based on variational Bayesian
approach (VBA) [12,13].

In the following, we first present our reconstruction algorithm based on VBA, applied with a
Gauss-Markov-Potts prior model on the volume to reconstruct [5]. To implement this algorithm,
the main difficulty is the computation of diagonal coefficients of the posterior covariance matrix,
which are linked to projection and backprojection operators (P/BP) : we solve this problem thanks
to the use of a matched pair which is here the Separable Footprint (SF) [14]. We present simulation
results and compare the obtained reconstruction with the one given by joint maximization a posteriori
(JMAP) [5,15]. To the best of our knowledge, this work is the first attempt to apply VBA to a very
general 3D inverse problem such as 3D X-ray CT.

2. Variational Bayesian Approach

We consider a cone-beam acquisition process : X-rays are sent from a source through the object to
control and hit a flat detector which measures the decrease of intensity they have undergone inside the
volume. Several perspectives of the volume are acquired by rotating the object around its vertical axis.
The M collected measurements g are called the projections and are connected to volume f , of size N,
by the linear forward model taking uncertainties into account [16]

g = Hf + ζ (1)

where H is called the projection operator. Its adjoint HT is the backprojection operator [14].
Since both the data and the volume are huge, matrix H , which is size M × N, is not storable in
memory. Consequently, successive projections and backprojections in MBIR methods are computed
on-the-fly [14,15]. Uncertainties ζ are zero-mean Gaussian [16]

p(ζi|ρζi ) = N (ζi|0, ρ−1
ζi

), ∀i ∈ {1, . . . , M} . (2)

Precisions ρζ = (ρζi )i are assigned Gamma conjugate prior [5] :

p(ρζi |αζ0 , βζ0) = G(ρζi |αζ0 , βζ0), ∀i. (3)

The prior model on the volume is a Gauss-Markov-Potts prior which consists in labelling each
voxel j according to its material zj = k ∈ {1, . . . , K}, where K is the number of materials. Then, the
distribution of value f j of voxel j depends on its material zj :

f j ∼ N (mk, ρ−1
k ) if zj = k, ∀j ∈ {1, . . . , N} . (4)

Means m = (mk)k and inverses ρ = (ρk)k of variances of the classes have to be estimated and are
assigned conjugate priors [5] : {

p(mk|m0, v0) = N (mk|m0, v0)

p(ρk|α0, β0) = G(ρk|α0, β0)
, ∀k. (5)
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A Potts model is assigned to labels z in order to favour compact regions in the volume [5] : denoting
by V(j) the neighbourhood of voxel j, we have, according to Hammersley-Clifford theorem [17],

p(z|α, γ0) ∝ exp

 N

∑
j=1

 K

∑
k=1

αkδ(zj − k) + γ0 ∑
i∈V(j)

δ(zj − zi)

 . (6)

From our prior modelM, the posterior distribution of unknowns ψ = (f , z, ρζ ,m, ρ) is given by
Bayes’ rule [5]

p(f , z, ρζ ,m, ρ|g;M) ∝ p(g|f , ρζ)p(f |z,m, ρ)p(z|α, γ0)p(ρζ |αζ0 , βζ0)p(m|m0, v0)p(ρ|α0, β0), (7)

where α = (αk)k. Based on this distribution, JMAP can be performed [5] but does not provide
uncertainties on the result. MCMC methods for joint computation of the means and the variances of
the posterior distribution are too computationally costly for 3D applications [5,18]. For this reason, we
apply VBA which consists in approximating the true posterior distribution p by a simpler distribution
q on which posterior means and variances can be easily estimated. Approximating distribution q
minimizes Kullback-Leibler (KL) divergence KL(q||p) on a chosen set of simple distributions [12]. The
choice we make for q is a factorizable approximation, which only preserves a dependence between
value f j of voxel j and its label [19] :

q(f , z, ρζ ,m, ρ) =
N

∏
j=1

q f j
( f j|zj)×

N

∏
j=1

qzj(zj)×
M

∏
i=1

qρζi
(ρζi )×

K

∏
k=1

qmk (mk)×
K

∏
k=1

qρk (ρk). (8)

Minimizing KL divergence with respect to each factor while fixing the others leads to [13,19]

q f j
( f j|zj = k) = N ( f j|m̃jk, ṽjk)

qzj(k) ∝ exp
[
α̃jk + γ0 ∑i∈V(j) qzi (k)

]
, ∀k

qρζi
(ρζi ) = G(ρζi |α̃ζ0i

, β̃ζ0i
)

qmk (mk) = N (mk|m̃0k , ṽ0k )

qρk (ρk) = G(ρk|α̃0k , β̃0k )

(9)

The VBA algorithm turns into the iterative updating of the parameters of these distributions with
respect to the others. The updating formulae and the order of their applications are given in [13]. In
particular, at iteration t, the variances of the approximating distribution for the volume are updated by

ṽ(t)jk =

 α̃
(t−1)
0k

β̃
(t−1)
0k

+
[
HTṼ −1

ζ H
]

jj

−1

(10)

where Ṽζ = diag
[
ṽζ

]
and ṽζi =

β̃
(t−1)
ζ0i

α̃
(t−1)
ζ0i

, ∀i [13]. Moreover, the updating formula for intensity parameter

of the approximating Gamma distribution for ρζi is [13]

β̃
(t)
ζ0i

= βζ0 +
1
2

(
(gi − [Hm̃]i)

2 +
[
HṼ HT

]
ii

)
(11)

where Ṽ = diag [v] and 
m̃j = ∑K

k=1 m̃(t)
jk q(t)zj (k)

ṽj = ∑K
k=1

[
ṽ(t)jk +

(
m̃(t)

jk − m̃j

)2
]

q(t)zj (k)
. (12)
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To compute approximate posterior variances, formula (10) needs the computation of diagonal
coefficients of HTṼ −1

ζ H , while formula (11) needs diagonal coefficients of HṼ HT . Both of these
matrices imply projector and backprojector which are not in memory, contrary to 2D applications [19].
Therefore, in order to implement VBA for 3D X-ray CT, we need to find a way to compute diagonal
coefficients in formulae (10) and (11) efficiently. We propose a strategy which is detailed in the next
section.

3. Computation of diagonal coefficients

At one iteration of the algorithm, for any voxel j, diagonal coefficient used to compute vjk by (10) is

dvj =
[
HTṼ −1

ζ H
]

jj
= ‖He(j)‖2

Ṽζ
(13)

where e(j)
i = δ(j− i), ∀i. As dv = (dvj)j has the size of a volume, formula (13) implies to compute N

projections, which is very long, even if the projector implemented on GPU is very fast. We calculated
that, if we have to reconstruct a volume of size N = 2563 voxels from 64 projections of size 2562 pixels,
and if one projection takes only 10 milliseconds, computing all dialgonal coefficients dvj , ∀j, for only
one iteration of proposed VBA algorithm [13], would require more than 40 hours. Due to this huge
computational cost, we prefer to consider the algebraic formula :

dvj =
[
HTṼ −1

ζ H
]

jj
=

M

∑
i=1

H2
ijṽ
−1
ζi

, ∀j. (14)

From this formula, diagonal coefficients dv appear to be similar to a backprojection of ṽ−1
ζ = (ṽ−1

ζi
)i,

except that coefficients Hij are replaced by their squares H2
ij, ∀i, j. Similarly, diagonal coefficients

dζi =
[
HṼ HT

]
ii
=

N

∑
j=1

H2
ijṽj, ∀i, (15)

appear like a projection of volume ṽ, with H2
ij instead of Hij. Given formulae (14) and (15),

we implement a squared-projector H(2) such that H(2)
ij = H2

ij, ∀i, j, and a squared-backprojector (H(2))T .
Both are implemented exactly like the projector and the backprojector respectively. In order to ensure
the validity of formulae (14) and (15), and therefore the convergence of our algorithm, we use a
matched P/BP pair, which is here the Separable Footprint (SF) pair [14]. This pair is implemented on
GPU as described in [15]. The same implementation is used for H(2) and (H(2))T .

Thanks to these new operators, in one iteration of our algorithm, diagonal coefficients dvj , ∀j,
are simultaneously computed by applying (H(2))T , which is very fast because it takes exactly the
same time as a backprojection, instead of N projections. Similarly, diagonal coefficients dζi , ∀i,
are simultaneously computed by applying H(2), as fast as one projection, instead of M backprojections.

Figure 1 shows diagonal coefficients of HHT and HTH , computed by H(2) and (H(2))T

respectively. Diagonal coefficients of HHT have the size of projections and are shown as it in Figure 1,
while those of HTH are shown as a volume. We now apply our VBA algorithm to simulated data,
and compare the estimated PM with JMAP. JMAP algorithm is described in [5] and applied with SF
pair as we did in [15].



Proceedings 2019, 33, 4 5 of 9

(a) (b)
Figure 1. Diagonal coefficients of HTH (a) and HHT (b).

4. Results

The simulated phantom is of size 2563 voxels and contains K = 5 classes. It is shown in Figure 2.
We reconstruct this volume from 64 projections of size 2562 pixels, uniformly distributed over [0, 2π].
These projections are noisy with SNR equal to 20 db.

Parameters (αζ0 , βζ0 , α0, β0) are fixed near Jeffreys’ prior as in [13,19]. The strategies to fix other
parameters α, γ0, m0 and v0 are explained in [13]. The values of the parameters for VBA are given in
Table 1, excepted m0 and α which are fixed automatically as in [5]. For our comparison, the parameters
are the same for JMAP.

Table 1. Parameters for JMAP and VBA algorithms.

Parameters K γ0 v0 αζ0 βζ0 α0 β0

Values 5 6 1 10−4 10−2 10−6 10−2

The initialization of approximating distributions for VBA is described in [13]. This initialization
requires initial volume and segmentation, obtained as explained in [13]. The same initialization is used
for JMAP.

Figures 3 and 4 show the reconstructions obtained by JMAP and VBA respectively. They are
compared with total-variation (TV) regularization. For TV, the reconstruction, shown in Figure 5,
is obtained thanks to Primal-Dual Frank-Wolfe algorithm (PDFW) [20]. Thanks to the use of Gauss-
Markov-Potts prior model, JMAP and VBA reconstructions have compact and well-distinguishable
regions, while contours are slightly blurred for TV. VBA reconstruction has smoother contours than JMAP.

Figure 2. Original phantom.
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Figure 3. Reconstruction by JMAP.

Figure 4. Reconstruction by VBA.

Figure 5. Reconstruction by PDFW.

For each reconstruction, the L2-relative error with respect to the original phantom is shown
in Table 2. As we see in Figure 4, details are lost by VBA because of the factorized approximating
distribution. Consequently, VBA has the highest error, while it is roughly the same for PDFW and
JMAP. The variances of the posterior distribution of the volume estimated by VBA are shown in
Figure 6. Unsurprisingly, the highest variances are on the thinest part of the phantom which is the bone.
Nevertheless, the loss of details in the reconstruction is not highlighted by posterior variances. Indeed,
uncertainties are known to be under-estimated in VBA when considering divergence KL(q||p) [12].
The stop criterion for PDFW is given in [20] and is minimized, while those for JMAP and VBA are
maximized and given in [5,13] respectively. For each algorithm, the evolution of stop criterion is shown
in Figures 7–9 respectively. One iteration of JMAP contains 20 sub-iterations and few sub-iterations
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for segmentation step [5], while VBA and PDFW do not have sub-iterations [13,20]. Consequently,
in Table 2, the computation time of VBA is much less than the one of JMAP and quite similar to the
one of PDFW. Furthermore, during our experiments, we have noticed that, compared to JMAP, VBA
has a higher sensitivity to the choice of the parameters, as to the number of iterations. Indeed, for a too
large number of iterations of VBA, the reconstruction is over-regularized. This is a drawback of VBA
compared to JMAP.

Moreover, the memory cost of VBA is much higher than the one of JMAP and PDFW. This makes
VBA only applicable to small regions-of-interest (ROI), typically of size 2563. Based on a reconstruction
of high quality (for instance, obtained by JMAP [5]), the reconstruction of ROI can be performed
following the method of [21], as done for other MBIR methods [14]. This point will be covered in
future works.

Figure 6. Variances (log) obtained by VBA

Figure 7. Convergence of PDFW

Figure 8. Convergence of JMAP
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Figure 9. Convergence of VBA

Table 2. Comparaison of PDFW, JMAP and VBA algorithms.

Algorithm L2-Relative Error Computation Time

PDFW 6.0 % 126.3 s

JMAP 9.1 % 751.6 s

VBA 13.5 % 150.0 s

5. Conclusions and Perspectives

In this paper, we have presented an application for 3D X-ray CT of variational Bayesian approach
(VBA) with Gauss-Markov-Potts prior model. By computing posterior mean (PM) thanks to VBA,
we have been able to jointly perform the reconstruction and the estimation of the posterior variances,
which give the uncertainties on the reconstruction. To compute these variances, we have seen that
the huge dimension in 3D X-ray CT hinders to easily get diagonal coefficients, due to the fact that
projection and backprojection operators cannot be stored in memory. To tackle this problem, we have
taken benefit from the use of a matched pair of projector and backprojector, which was the Separable
Footprint (SF) one : based on this pair, we have implemented “squared” projector and backprojector
which have enabled us to compute diagonal coefficients on-the-fly. The GPU implementation for these
squared operators was the same we used for SF projector and backprojector.

Our tests on simulated data and comparison with joint maximization a posteriori (JMAP) have
shown that VBA obtains smoother contours than JMAP and converges faster. Although the memory
cost of VBA is higher than the one of JMAP, we have underlined that the algorithm can be applied to
estimate the uncertainties in a region-of-interest (ROI). Future works will focus on applications to real
and bigger data, as on optimization of GPU implementation of SF pair [15]. Other variational Bayesian
algorithms will also be worth to study in order to improve the estimation of uncertainties.

Funding: This research was funded by CIFRE Grant 2016/0188 from French Agence Nationale de la Recherche et
de la Technologie (ANRT).
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