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Abstract: In this paper we focus on the estimation of mutual information from finite samples
(X ×Y). The main concern with estimations of mutual information (MI) is their robustness under
the class of transformations for which it remains invariant: i.e., type I (coordinate transformations),
III (marginalizations) and special cases of type IV (embeddings, products). Estimators which fail to
meet these standards are not robust in their general applicability. Since most machine learning tasks
employ transformations which belong to the classes referenced in part I, the mutual information can
tell us which transformations are most optimal. There are several classes of estimation methods in
the literature, such as non-parametric estimators like the one developed by Kraskov et al., and its
improved versions. These estimators are extremely useful, since they rely only on the geometry of
the underlying sample, and circumvent estimating the probability distribution itself. We explore the
robustness of this family of estimators in the context of our design criteria.

Keywords: mutual information; non-parametric entropy estimation; dimension reduction; machine
learning

1. Introduction

Interpretting mutual information (MI) as a measure of correlation has gained considerable
attention over the past couple of decades for it’s application in both machine learning [1–4] and
in dimensionality reduction [5], although it has a rich history in Communication Theory, especially
in applications of Rate-Distortion theory [6] (While MI has been exploited in these examples, it has
only recently been derived from first principles [7]). MI has several useful properties, such as having a
lower bound of Imin = 0 for variables which are uncorrelated. Mostly we are interested in how the
MI changes whenever we pass one set of variables through a function, which according to the data
processing inequality can only ever destroy correlations and not increase them. Thus, the MI for any
set of variables X× Y is an upper bound for any transformation f (X)× g(Y). This feature makes MI a
good measure of performance for any machine learning (ML) task, which is why has gained so much
attention recently [1–4].

The main challenge with using MI in any inference task is computing it when one only has
a sample X × Y ⊂ X × Y. The MI one estimates from the sample is highly dependent on the
assumptions about the underlying joint distribution p(x, y); effectively, one estimates MI by estimating
the density p(x, y). The most popular method for estimating MI is by using the class of non-parametric
estimators built on the method derived by Kraskov et al. [8] (KSG). The KSG estimator uses local
geometric information about the sample to approximate the density p(xi, yi) at each point (xi, yi) and
then calculates a local estimate of MI from it. While this approach has been very successful, there
are some weaknesses which we will discuss in this paper. Specifically, the use of local geometric
information causes the estimator to not be coordinate invariant in general, which is a violation of the

Proceedings 2019, 33, 31; doi:10.3390/proceedings2019033031 www.mdpi.com/journal/proceedings

http://www.mdpi.com/journal/proceedings
http://www.mdpi.com/journal/proceedings
http://www.mdpi.com
https://orcid.org/0000-0000-000-000X
http://www.mdpi.com/2504-3900/33/1/31?type=check_update&version=1
http://dx.doi.org/10.3390/proceedings2019033031
http://www.mdpi.com/journal/proceedings


Proceedings 2019, 33, 31 2 of 9

basic properties of MI. What’s worse, is it’s inability to see through useless information, i.e., noise.
This is also a consequence of using local information without regard to the overall global structure
of the space. When combined, these two problems cause unwanted behavior in even the simplest of
situations.

There have been some improvements to KSG [9] which we will discuss. Most often studies of
estimators are concerned with its effectiveness with small numbers of samples in large dimension, while
here we will be mostly concerned with its robustness under coordinate transformations, redundancy
and noise. We will define redundancy and noise more precisely in a later section, but one can also
check [7] for a more rigorous definition. As was shown in [1] KSG handles redundant information
well, which we will reiterate in a later section. It is KSG’s inability to handle noise that diminishes it’s
effectiveness in real data sets. In the next section we will briefly discuss the basic properties of MI, and
then discuss the ideas behind non-parametric entropy estimators. We will then examine the robustness
of KSG and it’s improvements in section IV. We end with a discussion.

2. Mutual Information

We will reiterate some the basic properties of mutual information. Consider two spaces
of propositions, X and Y, whose joint space is given by X × Y (The spaces X, Y can be either
discrete/categorical or continuous.). The global correlations present between the two spaces is
determined from the mutual information,

I[X; Y] =
∫

dxdy p(x, y) log
p(x, y)

p(x)p(y)
(1)

where p(x, y) is the joint probability density and,

p(x) =
∫

dy p(x, y) =
∫

dy p(y)p(x|y) and p(y) =
∫

dx p(x, y) =
∫

dx p(x)p(y|x) (2)

are the marginals. The product marginal p(x)p(y) can be interpreted as an independent prior and
the MI gives a ranking of joint distributions p(x, y) according to their amount of correlation; joint
distributions with more correlation have higher values of MI. The MI is bounded from below by
Imin = 0 whenever the spaces X and Y are uncorrelated; i.e., p(x, y) = p(x)p(y), and is typically
unbounded from above (except in cases of discrete distributions).

One immediate consequence of the functional form of (1) is its invariance under coordinate
transformations. Since the probabilities,

p(x, y)dxdy = p(x′, y′)dx′dy′ (3)

are equivalent, then I[X; Y] = I[X′; Y′]. While this fact is somewhat trivial on its own, when combined
with other types of transformations it can be quite powerful. In this paper we will study three main
types of transformations, the first being coordinate transformations. The second kind of transformation
of interest is marginalization, and the third is products. Marginalization is simply the the projecting
out of some variables, which according to the design criteria of MI [7], can only ever decrease the
correlations present. On the other hand, products of spaces can increase correlations when the new
variables provide new information. The most trivial type of product is an embedding.

One advantage of MI is its invariance under the inclusion of redundant information. For example,
consider adding to the space X another space which is simply a function of X, i.e., X→ X× f (X). The
joint probability distribution becomes,

p(x, f (x), y) = p(x, f (x))p(y|x, f (x)) = p(x)δ( f (x)− f )p(y|x) (4)
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and hence the MI is,

I[X× f (X); Y] =
∫

dxdyd f p(x)δ( f (x)− f )p(y|x) log
p(x)p(y|x)
p(x)p(y)

= I[X; Y] (5)

The map X→ X× f (X) is an embedding of X into a higher dimensional space. Such a transformation
does not increase the intrinsic dimension of X. Machine learning algorithms exploit this type of
transformation in conjunction with coordinate transformations and marginalizations.

Much like in Equation (4), MI is also invariant under the addition of noise, which are defined as
variables, Z, that are uncorrelated to both X and Y,

p(x, z, y) = p(x, z)p(y|x, z) = p(x)p(z)p(y|x) = p(z)p(x, y) (6)

And like (5) the mutual information is invariant,

I[X× Z; Y] = I[X; Y× Z] =
∫

dxdydz p(z)p(x, y) log
p(x, y)

p(x)p(y)
= I[X; Y] (7)

Unlike with redundancy, noise variables necessarily increase the dimension of the underlying space.

3. Non-Parametric Estimation

Non parametric entropy estimators attempt to utilize the geometry of the underlying sample to
estimate the local density and hence the local entropy. A popular estimator is the one developed by
Kozachenko and Leonenko (KL) [10], which we will briefly motivate. Consider the task of estimating
the entropy of a sample X from an underlying space X. Our goal is to find an unbiased estimator of
the form Ĥ[X ] = N−1 ∑N

i=1 log p(xi), which converges to the true Shannon entropy as N → ∞ (We
highlight the word true here, since the underlying probability distribution is not known and hence
our estimation depends on our assumptions about its form.). To find an approximation of log p(xi),
consider the following probability distribution,

Pε(xi)dε =
(N1)!

1!(k− 1)!(N − k− 1)!
pk−1

i (1− pi)
N−k−1 dpi

dε
dε (8)

which is the probability that the kth-nearest neighbor of the point xi exists within the small spherical
shell of radius ε/2 and that there are k− 1 points at ri < ε/2 and N − k− 1 points at ri > ε/2 + dε.
This distribution is of course properly normalized, and upon evaluating the expected value of the
logarithm of pi, we find,

〈log pi〉 =
∫

dε Pε(xi) log pi = ψ(k)− ψ(N) (9)

where ψ(k) is the digamma function. From here one can determine an approximation for the logarithm
of the true distribution by assuming something about the local behavior of p(xi) with respect to the
probability mass pi. In the KL approximation (and as well in the KSG approximation), it is assumed
that the probability within the region defined by pi is uniform with respect to the true distribution at
the point xi,

pi ≈ cdεd p(xi) (10)

where d is the dimension of the space and cd is the volume of the unit d-ball (The form of cd depends
on the choice of metric for the space X. As we will see a useful choice for MI estimation is the L∞

norm.). Putting (10) into the unbiased estimator one arrives at,

Ĥ[X ] = ψ(N)− ψ(k) + log cd +
d
N

N

∑
i=1

log(εi) (11)
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3.1. The Vanilla KSG Estimator

The KSG estimator of the first kind is derived by taking the expression in (11) and applying it to
the decomposition,

Î[X ;Y ] = Ĥ[X ] + Ĥ[Y ]− Ĥ[X ,Y ] (12)

where Ĥ[X ,Y ] is the entropy over the joint distribution p(x, y). As has been shown and argued by
KSG, the approximation above is slightly naive since the local densities in the joint and marginal spaces
can be different, leading to errors in the terms involving log(εi) which don’t necessarily cancel. As a
neat trick, KSG suggests using the same density found in the joint space in the marginal spaces, so
that the factors (dx/N)∑N

i=1 log(εx
i ),(dy/N)∑N

i=1 log(εy
i ) and ((dx + dy)/N)∑N

i=1 log(εxy
i ) will cancel.

Choosing the same density for fixed k in the joint space causes the k values in the marginal spaces to
vary, and hence we arrive at the expression,

Î1[X ;Y ] = ψ(k) + ψ(N)− 〈ψ(nx + 1)〉 − 〈ψ(ny + 1)〉 (13)

where nx and ny are the number of points which land in the dx and dy balls of radius ε/2 in the
marginal spaces.

One unfortunate consequence of the KSG estimator of the first kind is its reliance on the L∞ norm
for finding neighbors. As has been pointed out by others[9], such a choice can lead to problems in
regions where the probability varies greatly, which can easily happen in spaces of large dimension.
Unless the density of samples increases exponentially with respect to the dimension of the space, the
errors in choosing L∞ will compound quickly.

3.2. The LNC Correction to KSG

As an attempted correction to KSG’s problem with using the L∞ box, S. Gao et al. proposed
the local non-uniform correction (LNC) technique. This technique adjusts the unbiased estimator for
MI by replacing the L∞ volume in the joint space with a volume computed from a PCA analysis.
The basic idea is the following. Consider a point xi whose kth-neighbor is xk. With the collection of
k + 1 points including xi, xk and all points closer than xk, construct the correlation matrix Cij and find
its eigenvectors. By then projecting each point along the maximal eigenvectors, we can find a PCA
bounding box, which is rotated and skewed with respect to the L∞ box. The assumption in this case is
that the rotated PCA box is a much better representation of the region of uniform probability around
xi. Once each volume is found, the MI is given by,

ÎLNC = ÎKSG −
1
N

N

∑
i=1

log
V̄i
Vi

(14)

where V̄i is the PCA volume and Vi is the L∞ volume. Such an estimator has shown to give vast
improvement to the naive KSG method, however current results are limited to two dimensional
problems. The reason for this is its inability to deal with redundant information. To see this, consider
a two-dimensional problem in which the variables X× Y have some non-trivial correlations. If we
add to X a redundant copy, X→ X× f (X), then we expect the MI to be invariant. If one naively uses
the LNC method, one will find that the MI increases. This is because the volumes V̄i will most often
decrease when computed in the redundant scenario and hence the LNC correction term will most
often increase.

A possible fix to this problem is to not only correct the volume in the joint space, but to fix the
volumes in the marginal spaces as well, leading to the LNC correction of the second kind,

ÎLNC2 = ÎKSG −
1
N

N

∑
i=1

log
V̄xy

i

V̄x
i V̄y

i
(15)
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In investigating the efficacy of such a method, we discovered that it’s not very robust. This is mainly
due to the fact that like the original method in (14), (15) is not coordinate invariant in general, and
while the volume supplied by redundant variables can in principle be canceled in the denominator
of (15), the volumes themselves will be computed with respect to spaces of different dimension, and
will therefore not exactly cancel. The effect is to still increase MI under the influence of redundant
variables, which is undesirable since vanilla KSG is most successful in this domain. Thus while LNC
fixes one aspect of KSG, it reduces its efficacy in another aspect.

4. Robustness Tests of NP Estimators

We will access the robustness of the KSG estimator and its variants with respect to the
three types of transformations outlined in section two (coordinate transformations, redundancy
and noise). Most tests in this section will use a multivariate normal distribution, Nk =

((2π)k|Σ|)−1/2 exp
[
− 1

2 (x− µ)TΣ−1(x− µ)
]

where Σ is the covariance matrix. The mutual
information between two sets of variables Xn and Xm, where n + m = k, is given by,

INk [Xn; Xm] = −
1
2

log
(
|Σk|

|Σn||Σ|m|

)
(16)

where |Σk| is the determinant of the covariance matrix Σk. For computing the KSG estimate, we will
use a python package called (NPEET) [11] developed by G. ver Steeg et al. For the LNC correction we
use a similar package [9].

4.1. Coordinate Transformations

Since KSG uses the L∞ norm to define the region of uniform probability for the estimate of pi, this
automatically presents a problem with coordinate invariance. KSG will not even be invariant under
linear scalings of the data, let alone arbitrary coordinate transformations (This is likely the motivation
for KSG’s estimator of the second kind, which gave different weight to each of the variables, however
they were unable to derive a closed form expression.). Essentially, if one variable, say z, is scaled
by a large order of magnitude with respect to the other variables, then the side lengths of the L∞

box will get chosen to be the length of the kth nearest neighbor in the direction of z. While this will
not necessarily cause a problem with the values of 〈ψ(xz + 1)〉, it will cause the counts for the other
variables to be much larger than they necessarily should be. As an example, consider the following
bivariate normal case.

As one can see from the figure, scaling one variable of the bivariate normal by 105 renders the
KSG method useless. While one can always argue for a heuristic scaling method, any robust method
for computing MI should be invariant under arbitrary scalings. Below is the same experiment using
the LNC method.

While the LNC method corrects the behavior of the curve in the highly correlated region, it
still fails to capture the correct value overall due to KSG’s inability to handle arbitrary coordinate
transformations. The effects of arbitrary coordinate transformations are even worse in higher
dimensional situations. Consider the eight-dimensional multivariate Gaussian below.

As you can see, multiplying all the variables by a factor of 10 greatly reduces the accuracy of the
KSG algorithm. To see this effect happening more gradually, we focus on one particular value of the
correlation matrix (where all correlation coefficients are equal to 1/2) and dial up the transformation
on the four variables in one set. The results for 10,000 and 100,000 points are below.

As you can see, the KSG approximation begins to deteriorate very quickly under linear
transformations when the dimensionality is high. Increasing the number of points by a factor of
ten seems to do little to help this. While this is certainly a flaw in the method, it isn’t as dire as the
others we will explore in the next section. For now, one can adopt a strategy in which each variable is
scaled in a way that gives equal weight to each of them. Proposed methods for this were given in [1].
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4.2. Redundancy vs. Noise

Another simple test we can perform is to see how MI in high dimensional situations handles
redundant and noisy variables. Specifically, we will look at how the MI changes as we dial up the
noise present in redundant variables by randomizing their values with respect to the other variables.
As we saw in [1], KSG does quite well with redundant variables, however noisy variables still present
a problem.

We have studied the ability of vanilla KSG to calculate MI under the presence of redundant
variables in [1]. Here we will briefly discuss the highlights. We examined a binary decision problem in
which two distributions (signal and background) are separated by a certain amount with respect to
their means. We showed in [1] that the neural network transformation leaves the MI unchanged which
is expected according to its design criteria [7]. We tested this claim on a more general data set which
was generated as part of a machine learning analysis on a mock SUSY search [12]. The SUSY data set
contains eight low-level variables and ten high-level variables which are functions of the low-level
ones. From the tests in [1], we again see that KSG performs well under the addition of the high-level
variables when they are redundant.

However when the variables are shuffled so that they are independent of both X and Θ, i.e., when
they are noise, then KSG starts to deteriorate very quickly. We can see this effect in the case where
the MI is known exactly. Using the multi-variate Gaussian with eight variables from the previous
tests, we added three copies of the last variable on one side, essentially taking x4 ∈ X and creating
X′ = X ∪ x4 ∪ x4 ∪ x4. We then dialed up the randomness in the three variables to 100%. What
we mean here is that we rearranged the points in the set (x4 ∪ x4 ∪ x4) so that a particular value
xi ∈ (x4 ∪ x4 ∪ x4) 6= f (X) and xi ∈ (x4 ∪ x4 ∪ x4) 6= f (Y).

This shows that noisy variables cause the KSG estimate to go down as a function of their
uselessness. This problem compounds quickly when the number of useless variables increases,
making KSG’s ability to determine MI in high-dimensional cases problematic.

5. Discussion

We’ve shown in practical examples that KSG is not robust under coordinate transformations
(Figures 1–4) and noise (Figures 5 and 6). While the effect of including noise is not as drastic in cases
of simple distributions (Figure 3), it is must more dramatic in cases where the the distribution is not
simple (Figure 5).

Figure 1. Comparison of mutual information estimates KSG for a bivariate normal distribution before
(npeet_1) and after (npeet_2) a linear transformation of one variable by a factor of 105. The second plot
shows the difference between (npeet_1) and (npeet_2).
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Figure 2. Comparison of mutual information estimates LNC for a bivariate normal distribution before
(lnc_1) and after (lnc_2) a linear transformation of one variable by a factor of 105. The second plot
shows the difference between (lnc_1) and (lnc_2).

Figure 3. Comparison of mutual information estimates KSG for a multivariate normal distribution
with equal correlation coefficients ρij before (npeet_1) and after (npeet_2) a linear transformation of
one variable by a factor of 10. The second plot compares the KSG estimators after four variables are
multiplied by a factor of 10.

Figure 4. Comparison of true mutual information between the eight variables of a multivariate normal
distribution where all correlation coefficients are equal to 1/2 (black line) and the value estimated from
N = 10, 000 and N = 100, 000 samples before (npeet_1) and after (npeet_2) a linear transformation is
applied to one variable x → x′ = 10x.
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Figure 5. Comparison of MI values for increasing additions of discriminating variables for the SUSY
data set. The first eight variables are low-level and the last ten are functions of the first eight. The first
plot shows a comparison of (NN) performance when the last ten variables are redundant while the
second shows how KSG’s accuracy deteriorates when the high-level variables are shuffled.

Figure 6. Comparison of true mutual information between the eight variables of a multivariate normal
distribution where all correlation coefficients are equal to 1/2 (black line) and the value estimated
from N = 10, 000 samples before (npeet_1) and after (npeet_2) a randomization is applied to the set of
redundant variables.
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