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Abstract: Information Geometry conflicts with the independence that is required for science and for
rational inference generally.
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1. Introduction

Information Geometry [1] assigns a geometrical relationship between probability distributions, using
the local curvature (Hessian) of the Kullback-Leibler formula

H(p; q) = ∑
i

p(i) log
p(i)
q(i)

(1)

as the covariant geometrical metric tensor [2,3] between q and p. On a n-dimensional manifold p(θ)
specified by parameters θ1, . . . , θn, this n×n Riemannian metric g is

gjk(θ) = ∑
i

p(i | θ)
∂ log p(i | θ)

∂θ j
∂ log p(i | θ)

∂θk

(
or
∫

dt p(t | θ) . . . in continuum form
)

(2)

Geodesic lengths ` and invariant volumes V follow from (d`)2 = ∑ gjkdθ jdθk and dV =
√

det g dnθ.
Necessarily, lengths are symmetric `(p, q) = `(q, p) between source and destination, so cannot be

isomorphic to H which is from-to asymmetric. Yet (1) is the only connection which preserves independence
of separate distributions, H(x×p ; y×q) = H(x; y) + H(p; q). Specifically, when H is used to assign an
optimal p (meaning minimally distorted from q) under constraints, that “maximum entropy” selection
also depends on separate optimisation x-from-y unless H has the form (1) [4,5].

It follows that any imposed geometrical connection must introduce interference between supposedly
separate distributions. That behaviour is incompatible with the practice of scientific inference, and is
confirmed by a counter-example.
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2. Counter-Example

Consider the 2-parameter family of probability distributions [6]

pvw(t (mod 1)) =


f
( t− v

w

)
for v < t < v + w,

f
(1 + v− t

1− w

)
for v + w < t < v + 1,

(3)

Parameters v (location) and w (width) lie between 0 and 1. The function f (Figure 1) is monotonically
increasing so that it rises from f (0) at t = v to f (1) at t = v+w (mod 1) before falling back to f (0) at
t = v+1 (mod 1). It is positive and normalised to

∫ 1
0 f (u)du = 1 so that the pvw(·)’s can be probability

distributions on the interval (0,1) — which could model growth and decay in a periodic system.

w
v+w

decaydecay growth

v0 1

p

t

f(0)

f(1)

Figure 1. Does v affect w?

2.1. Two Parameters v and w

The 2× 2 information-geometry metric evaluates to[
gvv gvw

gwv gww

]
=

1
w(1−w)

∫ 1

0

[
1 u
u u2

]
f ′(u)2

f (u)
du =

[
A B
B C

]
/ w(1−w) (4)

where A, B, C are constants. The table shows their values for two example functions. The first is easy to
integrate while the second has vanishing slope f ′(0) = f ′(1) = 0 at the joins (as in Figure 1).

f (u) eu/(e− 1) (8 + 6u2 − 4u3)/9

A e−1 = 1.71828 11
6 log 2 + 5

6 log 5−
√

15(arctan 5√
15 − arctan 1√

15 ) = 0.05945

B 1 = 1.00000 89
12 log 2− 25

12 log 5−
√

15
6 (arctan 5√

15 − arctan 1√
15 )−

4
3 = 0.02909

C e−2 = 0.71828 251
24 log 2 + 5

24 log 5 + 13
√

15
12 (arctan 5√

15 − arctan 1√
15 )−

31
3 = 0.01636

The invariant volume element follows as

dV =
√

det g dv dw =

√
AC− B2

w(1− w)
dv dw (5)
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where, by construction, AC− B2 > 0. The total invariant volume is infinite.

V =
∫ 1

0
dv
∫ 1

0
dw
√

det g = ∞ (6)

2.2. One Parameter w

If v had been fixed, p would have been confined to a submanifold pw(·) parameterised by w alone.
The information-geometry metric reduces to

gww =
1

w(1−w)

∫ 1

0
u2 f ′(u)2

f (u)
du =

C
w(1−w)

(7)

The invariant volume element follows as

dV =
√

gww dw =

(
C

w(1− w)

)1/2
dw (8)

where, by construction, C > 0. The total invariant volume is finite.

V =
∫ 1

0

√
gww dw = πC1/2 (9)

2.3. Comparison of One and Two Parameters

Both shape ((5) versus (8)) and integral ((6) versus (9)) over w differ qualitatively according to whether
or not v is held fixed.

Treatment of v influences invariant volumes over w [Geometry]

That is a mathematical fact of information geometry.

2.4. Science

For scientific application, (3) defines a wraparound translation-invariant model in which v does not
affect w.

Treatment of v should not influence inference about w [Science]

That is a science requirement. Any observational consequence of information-geometry’s invariant
volumes would be rejected by the informed scientist. If there were such consequence, then observation of
width w could be used to infer something about location v, contrary to the intention of the formulation.

3. Conclusions

Information geometry is not science. It denies the independence of separate parameters even though
such independence is a fundamental requirement of scientific inquiry. The assumption of a geometrical
connection between distributions is unnecessary for science and it fails under test.

Information geometry is a self-consistent mathematical structure which (like any other piece of
mathematics) may find specialised application within science, but is not fundamental to it. The only
fundamental connection is the Kullback-Leibler, which is from-to asymmetric hence not geometric.
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