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Abstract: This paper addresses the problem of data aggregation platforms operating in heterogeneous
Ambient Intelligence Environments. In these platforms, device interoperability is a challenge and
erratic sensor observations are difficult to be detected. We propose ADES (Automatic Detection of
Erratic Sensors), a statistical approach to detect erratic behavior in sensors and annotate those errors
in a semantic platform. To do that, we propose three binary classification systems based on statistical
tests for erratic observation detection, and we validate our approach by verifying whether ADES
is able to classify sensors by its observations correctly. Results show that the first two classifiers
(constant and random observations) had good accuracy rates, and they were able to classify most of
the samples. In addition, all of the classifiers obtained a very low false positive rate.

Keywords: sensor observations; binary classifiers; Aml platform

1. Introducction

Ambient intelligence (AmI) platforms enable the seamless interconnectivity among a huge number
of devices, allowing data consumers to get information efficiently and bringing up new possibilities in
the creation of new applications which take advantage of the information offered by the platforms.
However, one of the main problems of these platforms is the heterogeneity of the underlying devices
or deployments due to a lack of common rules, guidelines or standards when the platforms were
designed. In other words, sometimes the devices in the same platform cannot interoperate among
them. A feasible solution for this problem is ontologies [1], which allow the interoperability among
heterogeneous deployments and devices.

After working with Ambient Intelligence (AmlI) platforms in our previous research work [2],
we observed that, in large-scale platforms, with many devices, it is very common to see devices
injecting corrupt information into the system, in most cases due to a malfunction of it. On one hand,
this causes the platform to contain information that is not entirely real, losing user confidence, and
forcing them to filter and clean the data; on the other hand, manual monitoring of so many devices is
very complex and requires a lot of manpower from highly specialized data managers.

If a system is able to automatically detect erratic errors, several benefits will be achieved:

e  Data managers will know which device provides incorrect observations, and they can study the
point of failure in the platform where the corrupted data are inserted into the system.

Proceedings 2019, 31, 55; d0i:10.3390/ proceedings2019031055 www.mdpi.com/journal/proceedings


http://www.mdpi.com/journal/proceedings
http://www.mdpi.com
https://orcid.org/0000-0001-8810-0695
https://orcid.org/0000-0001-7815-5924
https://orcid.org/0000-0002-1183-9579
http://dx.doi.org/10.3390/proceedings2019031055
http://www.mdpi.com/journal/proceedings

Proceedings 2019, 31, 55 20of 11

e The erroneous data can be annotated semantically, giving extra information about it to
the end-users.

e  Final applications made by end-users will be improved.

e  Data reliability will be definitely improved.

In this research work, we will present three error types commonly found in the observations
provided by sensors; these three error types are constant observations, random observations, and
outlier observations.

In order to guide this research work, we stated a research question:

e Isitpossible to detect sensors producing erroneous observations at a high level of abstraction?

To answer that question, we developed a system composed of three binary classifiers (one for
each error type) based on statistical tests. The input of the binary classifiers will be a set of observations
produced by a sensor, and the output will be a classification indicating whether the input is considered
erroneous or not. This output will be annotated and published as semantic information so that
end-users can take advantage of it.

We carried out a validation of the system where 90 observations were classified by our system,
30 of them were used to fit the statistical models used by the classifiers, and the 60 remaining were
used to test the system.

The results obtained were satisfactory confirming that the approach proposed in this research
work is feasible and can be used for automatic detection of erratic sensors on Aml platforms.

The paper is structured as follows: Section 2 provides the state of the art on classification
techniques and ontology-based AmlI platforms, and Section 3 proposes the three binary classification
systems. This contribution is validated in Section 4, and, finally, Sections 5 and 6 provide some results
and conclusions, respectively.

2. Related Work

In this research work, we propose a system for detecting erratic sensors producing and injecting
incorrect data in an AmlI platform. We will detect those errors through the sensor observations provided
by an Aml platform; in most cases, this information is usually semantic. For doing that, we will develop
several binary classifiers based on statistics in order to check whether a sensor has erratic behavior or
not. We will present a brief review of the state of the art taking into account three main research areas.

In relation to classification techniques applied to sensors’ observations, there are many research
works that use classification techniques to solve specific problems with sensors. In the bibliography,
we can find that decision trees are used to determine localized building occupancy in real time [3]; or an
activity recognition and monitoring system [4]. An ensemble learning method as random forest was
used to diagnose lung cancer using a colorimetric sensor array [5], and Bayesian networks were used by
Tapia for activity recognition using ubiquitous sensors [6]. Regarding support vector machines, we found
an exhaustive review of the state of the art in the work of Mountrakis [7]; applying this classification
technique and using vision sensors, it was possible to classify images to detect fires [8] and improve
the classification for hyperspectral remote sensing [9]. One of the most used techniques are neural
networks, used to classify human activity using smartphone sensors [10,11]. ARIMA (Autoregressive
integrated moving average) models was used to decrease the number of transmitted data values between
sensor nodes [12], and anomaly detection for wireless sensors [13].

Regarding Aml platforms using ontologies, Aml environments are starting to integrate vertical
sectors such as healthcare, cybersecurity, environmental data, etc. Those vertical sectors use its
own domain-specific technology that prevents components in distributed systems to interoperate.
Thus, one of the main characteristics of a typical Aml environment is the heterogeneity of
its devices [14]. This has as a consequence difficulty for the exploitation and use of the data.
There is a growing need to integrate heterogeneous data silos and develop solutions for breaking and
bridging these barriers. Semantic technologies, and, in particular, ontologies, are one of the most used
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techniques to take advantage of the data among different deployments [15]. These technologies allow
the definition of semantic models of the data and its relationships, data mining, efficient searches on
the data, enable the automation of reasoning, etc. [16]

In conclusion, the heterogeneity of the devices deployed in the AmI platforms makes them difficult
to manage and to obtain valid data. The use of semantic technologies has proven to aid interoperability
and data extraction in these AmlI platforms. In our previous research work [2], we detected in those
platforms with many devices that it is common to find observations from sensors with errors, hindering
study and work with the AmlI platform and its data. In the state of the art, we have found many
solutions that classify sensors and its data, but there is no solution that classifies erratic sensors in
semantic Aml platforms, as the author’s proposal.

3. Proposal

In this section, we propose three binary classification systems based on statistical tests in order to
detect sensors that are generating erratic values or outliers. We called it ”“Automatic Detection of Erratic
Sensors” (ADES)

In Figure 1, we show our system consuming the semantic data offered by a semantic-based
Aml platform for detecting erratic sensors. We test our proposal using the Fiesta-IoT platform [17];
the Fiesta-IoT project works towards the integration of IoT platforms and has more than
20,000 sensors deployed.

. Deployment
. .‘ and platform
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users data managers

Ontology Inference Layer Automatic Detection
of Erratic Sensors

[ Middleware & Linked Data Sets

Deployment 1
o
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Figure 1. Automatic Detection of Erratic Sensors in an ambient intelligence platform based on semantic
data.

AmlI platforms offer very heterogeneous and diverse information about their devices; the most
advanced offer semantic information using ontologies, for example, the Semantic Sensor Network
Ontology [18] (see Figure 2). Therefore, access to the information is done through ontological queries;
we used SPARQL to obtain sensor observations.

In most cases, sensors operating on these platforms measure the value of a physical quantity
with respect to time, such as a temperature or humidity. In this research work, we will focus on these
types of sensors since the statistical tests that we will use are oriented to samples of numerical data
taken with a fixed frequency, that is, time series. Time series are used in signal processing, weather
forecasting, econometrics, mathematical finance, communications engineering, etc.
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Taking into account the above-mentioned characteristics, we have categorized three types of
errors (see Figure 3).

1. Constant observations: The observations offered by a sensor are constant or almost constant
around a value.

2.  Random observations: The observations measured by a sensor are random.

3. Outliers: Some of the observations read by a sensor are not consistent with the previous

measurements.
V- Sensor - ECG or EKG (Electrocardiogram) Odometer
Device Electric Field Sensor Oxidation Reduction Potential (ORP) Sensor
Sensing Device Electrical Sensor e Pedometer
----- Accelerometer B Energy Meter People Stay Duration Sensor
B Air Pollutant Sensor -0 Fall Detector P00 PH Sensor
----- Alcohol Level Sensor - Frequency Sensor - Precipitation Sensor
----- Atmospheric Pressure Sensor Fuel Level Sensor | Presence Detector
----- Blood Pressure Sensor - Gas Detector Pressure Sensor
----- Cholesterol Sensor - Glucometer Sensor Proximity Sensor
B Clock - GPS Sepnsor i Pulse Oxymeter
----- Cloud Cover Sensor - ) Gyrometer Sensor Radiation Particle Detector
P Conductivity Sensor - Gyroscope Sensor Salt Meter
- Counter -} Heart Beat Sensor - Seismometer
..... Current Sensor b 0 Humidity Sensor -} Shake Sensor
----- Delta Dew Point Sensor Hydrophone Skin Conductance Sensor
----- Dew Point Sensor - Image Sensor - Smoke Detector
----- Direction Of Arrival (DOA) Sensor " Leaf Wetness Sensor Solar Radiation Sensor
p- ) Distance Sensor - Light Sensor - Sound Sensor
----- Door State Sensor LoRa Interface P Speed Sensor
B Dust Sensor -0 Magnetometer Sun Position Direction Sensor

Figure 2. Excerpt from sensor types described in Semantic Sensor Network Ontology.
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Figure 3. Example of three types of errors. Please note that the y-axis is not on the same scale.

ADES implements three binary classifiers based on statistical tests to check if a sensor commits
one of the three types of errors described above. ADES receives as an input the sensor to be analyzed,
the time window in which the data will be analyzed and several parameters to fit the specific statistical
model as explained later. As a result, ADES will classify and semantically annotate the sensor as erratic
if any of the statistical tests are positive.

All tests performed by ADES are time-dependent. In this sense, ADES will be able to work in two

different ways:

e Asynchronously: The sensor’s observations will be classified due to an asynchronous request
of a client.

e Synchronously: ADES will monitor the sensor observations while the sensor is producing them
(or the platform publishes them). In this case, ADES will classify the observations annotating it
and publishing it in a semantic platform.
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The developed system consists of a client and a server. As a client, it makes requests to the
ontological platform, receiving the data to be tested. It performs the statistical calculations in order to
classify sensor observations, and, as a server, it publishes the results of the tests as semantic information.
ADES was mostly developed in Node js; the statistical tests were implemented using R and we used
a FUSEKI server to publish the semantic information.

We choose several statistical tests frequently used with time series problems in order to check if
the observations can really be considered constant, random, or an outlier. We consider a sample as
a set of observations:

e To check if a sample (a set of observations) is constant, we will discard the outliers, and then we
will use the standard deviation.
e Inorder to check if a sample is random, we will use the Bartels rank test of randomness.

e To check if a sample has outliers, we will use an autoregressive integrated moving average
(ARIMA) model.

In the following subsections, we will describe the binary classifiers developed for each type of
error, the statistical models used, and the parameters needed to fit them.

For all the tests, it is necessary to parameterize what the time window is that we want to analyze
to classify the sensors and, in terms of computational efficiency, we must also parameterize how often
we want to perform the tests.

3.1. Constant Observations Classifier

In this section, we propose a binary classifier for detecting sensors that are producing constant
observations.

In Figure 3a, we can see an example of observations that seem to be constant around the value 17,
although we also see that there are outliers outside the value 17.

We will use standard deviations to test whether a sensor offers constant values. The standard
deviation measures the amount of variation or dispersion of a set of data values; in this sense, the
outliers will negatively influence the value of the standard deviation, so we will discard them when
calculating the standard deviation. If the standard deviation is lower than a given parameter, we can
conclude that the values analyzed are constant.

Parameters of the model; depending on the sensor or the magnitude that the sensor is measuring,
it will be necessary to adjust the standard deviation in order to consider the sample as constant. For
environmental sensors, we recommend using the unit for the standard deviation and 24 h for the time
window.

3.2. Random Observations Classifier

This section describes a binary classifier which proves the randomness of a sample. Figure 3
presents a sample of a sensor that apparently returns random observations range between —100
and 100. We will perform the Bartels test for randomness [19]; we choose this test because it is
a nonparametric test which means it is more conservative although it has less statistical power and
it is one of the most used tests to verify the randomness in time series. This test returns a p-value
confirming whether the sample is random or not.

Model parametrization; we must parameterize it with the p-value that we consider maximum to
accept the sample tested as random. We propose to set this parameter to 0.05 since it is the standard
value of a p-value for a test to be statistically significant.

3.3. Outliers Observations Classifier

We present the last binary classifier to detect whether a sensor is producing outliers. We will use
an ARIMA model to predict or forecast future points in the time series. We choose the ARIMA model
because it is the most general class of models for forecasting a time series, and we considered that it
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would be a good technique to classify these errors. We will use the predictions made by an ARIMA
model in order to compare the prediction with the next observation. If the next observation is close to
the predicted value, we will not mark it as an outlier. We considered being close if the observation is
two times above or below the prediction’s standard error.

Figure 4 shows with a green line the future predictions made by the ARIMA model up to the
observation number 150; the two lines in red mark twice the standard error above or below the
prediction. Therefore, if the next observation is in the area between the two red lines, we will consider
it as normal; otherwise, the observation will be considered as an outlier.
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Figure 4. Temperature measurements up to sample 150. The green line represents the predictions made
by an ARIMA model, and the lines in red are twice the standard error.

Parameters of the model; first of all, the ARIMA model needs to be fitted in order to make the
best predictions. ARIMA models are denoted ARIMA(P,D,Q), where P refers to the autoregressive,
D is the differencing, and Q refers the moving average. We set these values using an algorithm which
auto selects the best ARIMA model values according to their Akaike information criterion (AIC).
Figure 5a shows a chart of 250 samples while Figure 5b shows the iterated differences of these previous
250 samples. Normally, in the time series, the iterated differences function is used to improve ARIMA
predictions; in our case, we concluded that the results were better using it instead of the raw sample
data. Figure 5 shows with red squares the values that are far from the prediction performed by the
ARIMA model, that is, those considered outliers.
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Figure 5. (a) shows a series of 250 samples from a temperature sensor and (b) represents the iterated
differences of the samples of the chart (a). In red, we can see the outliers considered by the ARIMA
model (observations were taken every 5 min.)

4. Validation

In Section 1, we presented the research question that guides this research work: Is it possible to
detect sensors producing erroneous observations at a high level of abstraction? In this section, we
will describe the experimental validation we conducted in order to address this research question.
The experimental validation consisted of verifying whether ADES is able to classify sensors by its
observations correctly. According to the three types of errors described in Section 3, ADES will try to
classify the sensors annotating them as erratic or normal.

We must highlight that in no case will we make electronic measurements on the sensors;
all information is obtained from IoT or Aml platforms.

4.1. Context

We obtained the data for the experimentation from the Fiesta-IoT platform. We selected 90 samples
of time series from temperature sensors. Each sample contains a set of 250 regular time-ordered
observations of temperature, taken every 5 min, in order to be considered as a time series. We choose
only temperature sensors to run the experimentation to avoid having to fit several models and making
experimentation simpler. As we said in Section 3, depending on the sensor, it will be necessary to
fit several parameters of the model. We selected from the platform a set of 90 samples in particular
for their variety of normal observations and errors. We choose a set of 30 samples to fit the models
(a set of 10 samples for each classifier) and a set of 60 samples to test the models (a set of 20 samples for
each classifier). (See Figure 6). In order to compare the results offered by ADES, previously, the samples
were annotated and labeled manually by four experts. These annotations will be very important in
order to check whether ADES correctly classifies the samples.
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Figure 6. Experiment plan.
4.2. Plan

The experiment was divided into five phases:

1. Selecting the data samples: In this phase, the authors of this research work (hereafter, experts)
made an exhaustive search among the observations of the sensors in order to choose the 90 most
representative samples, where half of them were normal, and the other half presented some of the
errors shown in Section 3.

2. Manual sample classification: The experts manually classified the 90 samples to be able to compare
them with the ADES results in the following phases.

3. Fitting the models: The experts fitted the models using a set of 30 samples.

4. Testing the models: The experts tested the ADES models with a set of 60 samples; as a result,
ADES returned the samples classified and annotated.

5. Comparing the results: The experts compared the set of samples annotated by ADES and the
annotated data made by themselves in phase 2.

4.3. Data Collection

Experts manually annotated the samples obtained from the Fiesta-IoT platform; this classification
was considered the actual classification. ADES returned its own classification, which was considered
the predicted classification. We will compose the confusion matrices with the classifications made by
the experts and ADES, and we will also compose a table with the performance rates of each classifier
(shown in the next Section 5).

5. Results

In this section, we will show the results obtained after the experimentation; we present them using
three confusion matrices (see Table 1). These matrices offer information about the actual classifications
done by the experts and predicted classifications done by ADES.

Aswe see in Table 1, the best classifier was “Constant observations classifier”. It correctly predicted
9 of 10 samples, failing with only one (false negative); that is, a sample considered as constant was not
correctly classified. It was also able to classify all samples that were not constant, meaning there was
no false positive.
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Table 1. Confusion matrices.

(a) Constant observations classifier

Predicted
Yes No Total

Yes 9 1 10
No 0 10 10

Total 9 11 20

Actual

(b) Random observations classifier

Predicted
Yes No Total

Yes 8 2 10
No 3 7 10

Total 11 9 20

Actual

(c) Outliers observations classifier

Predicted
Yes No Total

Yes 6 4 10
No 3 7 10

Total 9 11 20

Actual

The next best classifier was “Random observations classifier”, it correctly classified 8 of 10 random
samples, but it did not consider two random samples as such (false negative). Regarding the samples
that weren’t random, it classified three as random when there weren’t, producing three false positives.

The worst classifier was “Outliers observations classifier”; it predicted six samples as outliers
correctly but left four samples incorrectly classified (false negatives). In addition, it classified three
samples as outliers when in fact they were not (false positives).

Table 2 shows the prediction rates obtained by the classifiers. In terms of accuracy (how often
a classifier is correct), the rates were quite high for the first two classifiers (constant and random),
although none of them had 100% accuracy. The third classifier (outliers observations) obtained a regular
rate (0.65) for its accuracy. All the classifiers obtained a very low false positive rate, which means
that they made very few mistakes classifying samples as positive when they were not; even the first
classifier did not commit any mistake regarding false positives.

Table 2. Prediction rates of the classifiers.

Constant Observations Random Observations Outlier Observations

Classifier Classifier Classifier
Accuracy 0.95 0.75 0.65
Misclassification rate 0.05 0.25 0.35
True Positive Rate 0.9 0.8 0.6
False Positive Rate 0 0.3 0.3
True Negative Rate 1 0.7 0.7
Precision 1 0.73 0.67
Prevelence 0.5 0.5 0.5

6. Conclusions and Future Works

In this research work, we presented ADES, a statistical approach for classifying sensors by the
errors in their observations. We presented three types of errors that we commonly saw in sensor
observations: constant, random and outlier observations. This tool is able to detect erratic sensors and
annotate them on a semantic platform. Using ADES will improve the quality of the data in platforms
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that add a vast amount of sensors, helping mainly the end-users to obtain data with more quality and
the managers of these platforms to detect sensors producing errors.

In order to tackle the research question proposed in this research paper, we performed
an experimental validation where firstly we designed and developed three binary classifiers based on
statistical models for the detection of erratic sensors analyzing their observations; secondly, we fitted
those models, and, thirdly, we tested them. The models were fitted and tested using data obtained from
Fiesta-IoT, but we must highlight that this research work is independent of the Fiesta-IoT platform,
that is, ADES can be adapted to work on any other platform that aggregates heterogeneous sensors.

The classifications produced by ADES were compared with a classification made by experts in
order to build up the confusion matrices for the three models. With those confusion matrices, we can
study the performance of the models.

Results were quite interesting: the first two classifiers (constant and random observations) had
good accuracy rates, and they were able to classify most of the samples. However, the outlier
observations classifier did not have a precision rate as high as the other two classifiers. It may seem
that the classifier did not work as well as expected, but, after analyzing the samples classified as false
positives (samples classified as positive when the actual value is not), we could observe that it was
possible those false positives could be true positives and actually contained outliers. In addition, there
probably was a problem of bad classification done by the experts. The problem is that there is no
corpus considered as a “gold standard” to perform experiments with classification systems in the
domain of the heterogeneous sensor aggregation platforms, which we consider very interesting and
necessary as a possible future work.

During the experimentation, we fitted the models to be applied to observations of temperature
sensors. New and more experimentation could be made by fitting the models for many other kinds of
sensors as shown in Figure 2—for example, humidity sensors, GPS, solar radiation, etc.

As possible future work, it would be interesting to conduct experimentation with a greater test
corpus than used in the experimentation presented in this work, although this will mean having to
classify manually the whole corpus. Another possible future work could be the characterization of
new errors in the sensor’s observations and the development and testing of new classifiers for these
new types of errors.

In this research work, we used statistical tools such as standard deviation, outlier discarding,
the Bartels test for randomness and ARIMA models for time series, but other statistical tools like linear
regression, generalized additive model (GAM), or locally estimated scatterplot smoothing (LOESS)
can be tried. Artificial intelligence techniques could also be applied such as, for example, artificial
neural networks, convolutional neural networks, reinforcement learning, etc.—in short, any technique
that allows for developing a binary classifier, even an ad hoc development for the classification of
sensor observations.
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