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Abstract: The increasing adoption of mobile computing technology in the health and social domains 
offers new possibilities, for instance, promoting active aging. Health deterioration in elderly people 
could be successfully assessed by monitoring activities of daily living (ADLs) through mobile 
technology. In particular, frailty affects several dimensions (physical, psychological, and social) of 
human functioning, which are required to perform instrumental ADLs (IADLs). Starting from the 
definition of a model, this paper proposes the design of an intelligent mobile health system to assess 
frailty in an ecological way: to automatize the frailty assessment through wearable sensors, 
unobtrusively in free-living environments, and using machine learning in order to reduce the 
traditional efforts of clinicians assessing frailty. It supports automatic data collection from sensors 
and artificial intelligence analysis during the performance of real IADLs by elderly. The proposed 
system uses mobile/wearable devices, follows a microservices software architecture, and implements 
machine learning algorithms. A technical validation of the proposal is shown. 

Keywords: wearable devices; sensors; smart mobile health systems; machine learning; elderly frailty 
assessment 

 

1. Introduction 

Great efforts focus on promoting active ageing, including prevention of frailty, a condition that 
makes the body prone to diseases [1]. The frailty syndrome is defined as “a state of increased vulnerability 
of the deficit resolution of homeostasis after a stressful event as a result of the accumulation of age-
related problems in the physiological systems” [2]. It affects approximately 11% of older adults living 
in the community, and around 30–70% of surgical patients of advanced age [3]. This is a health and social 
problem with adverse health-related outcomes (increase of complications, falls, and even death) [4]. 

The classical and most accepted clinical approach to diagnose the physical dimension of frailty 
is the validated model of Fried, which assesses five core criteria: low energy, involuntary weight loss, 
slowness in mobility, muscle weakness, and low physical activity. According to Fried et al. [4], older 
people are considered: “fragile” if they meet 3 or more frailty criteria of the above; “pre-fragile” if 
they meet one or 2 criteria; and “non-fragile” if they do not verify any. However, the most consensual 
and updated definition by Gobbens et al. [5] shows that frailty also needs to be understood from the 
functional, psychological, and social viewpoints. 
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Concerning the current literature, from an ecological perspective, the consequences or even 
causes of frailty can be observed when elderly people reduce their performance level in the activities 
of daily living (ADLs) [6], which involve complex cognitive and motor skills (executive functions) 
such as house cleaning, small shopping tasks, and use of a telephone and mean of transports. The 
ADLs are all activities performed by the human being, belonging to the areas of occupation. These 
activities can be classified into three main groups: (1) personal or basic activities of daily living 
(BADLs) include all activities essential for survival, such as selfcare activities, functional mobility, 
sexual activity, toilet hygiene, and the care of personal devices; (2) instrumental activities of daily 
living (IADLs) include activities such as driving, house cleaning, small shopping tasks, using a 
telephone, and means of transport, which involve complex cognitive and motor skills since they need 
adequate levels of higher cognitive aspects (executive functions), and higher levels of social and 
environmental interactions than BADLs; and (3) advanced activities of daily living (AADLs) include 
employment, traveling, hobbies, and participation in social and religious events. These are the most 
complex ADLs that usually involve voluntary physical and social functions, although AADLs are not 
essential to maintain independence. 

On the other hand, new paradigms are needed to better explain the related factors of frailty in a 
more ecological manner. An ecological approach could enhance new political, clinical, and research 
strategies that promote higher levels of quality of life of elderly people from different populations. The 
elder frailty assessment could get clear benefits by taking into account all the information collected 
from the clinical setting by the health professionals, and from the real environment of the individual 
in an ecological way, without disturbing the users’ life. 

Information and Communications Technologies (ICT) are contributing to develop many domain-
specific intelligence systems [7]. In the health and social domain, new advances in ICT such as mobile 
computing technology, context-aware systems, Internet and wireless communications, cloud computing, 
service-oriented architectures (SOA), and data science, are successfully applied [8]. Mobile/wearable 
devices can be used as a low-cost complement to medical measuring instruments, getting measures 
while patients are performing ADLs. For example, they can provide location and measurements of 
psychophysiological signals with precision and efficiency [9]. The mobile technology has huge potential 
to detect frailty everywhere, including outdoors. The mobile/wearable platforms/devices with built-in 
sensors most used to retrieve frailty indicators are [10–15]: electronic stickers, bands, bracelets, and 
smartphones/smartwatches. 

Architecture-based approaches in computer-based health systems are proved to be a viable 
solution to guarantee relevant quality properties such as interoperability, integration, mobility, self-
adaptation, and fault-tolerance [16–20]. Microservices are also a promising architectural software 
design pattern to go a step further in extensibility, reuse, and evolution by taking into consideration 
specific characteristics of the Internet of Things (IoT) paradigm [21]. Microservices allow to integrate 
machine learning algorithms to infer useful insights from the raw data collected from sensing devices. 
This paper proposes the design of a smart mobile health system to assess frailty in an ecological manner: 
to automatize the frailty assessment through wearable sensors, unobtrusively for the users and in their 
free-living environments, and using machine learning in order to reduce the traditional efforts of 
clinicians assessing frailty. Starting from the definition of a model, the system supports data collection 
and analysis while elderly perform a real IADL. The proposal uses sensing mobile/wearable devices, 
follows a microservices oriented software architecture, and implements Machine Learning algorithms. 

The paper is organized as follows. Section 2 defines the model for the frailty assessment by 
selecting variables according to general and specific requirements related to the performance of an 
IADL (“do shopping”). Section 3 introduces the design of the technological system for the automatic 
data collection from built-in sensors in mobile/wearable devices. Section 4 describes the technical 
validation of the system accomplished by an experiment and a follow up questionnaire to elderly and 
experts in terms of acceptance, usability, and feasibility of the proposal. The last section summarizes 
conclusions and future work. 
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2. The Ecological Approach 

2.1. General and Specific Requirements 

The approach aims to assess frailty in an ecological way, as in previous studies [14,22]. However, 
traditional assessment of frailty ignores the relationships between frailty and the performance level in 
the activities of daily living. New paradigms can explain the related factors of frailty in an ecological 
manner and assess it while the elderly are performing their activities. An ecological approach could 
enhance political, clinical, and research strategies promoting higher levels of quality of life of elderly 
from different populations. To this end, the consequences or even the causes of frailty could be 
observed when elderly reduce their performance level in the IADLs [22]. The elderly frailty 
assessment could take into account not only information collected by professionals, but also from the 
real environment of the elderly when accomplishing IADLs (i.e., ecologically). 

The IADL proposed in this paper for assessing frailty is “do shopping”. This activity allows the 
ecological assessment of three dimensions of frailty (physical, psychological, and social) by getting 
some relevant indicators. In the case of physical dimension, we can measure for example the number 
of steps, time spent in walking, heart rate, etc. Some indicators of the psychological dimension, such 
as stress or disorientation, could be also derived from the heart rate and GPS for the path followed to 
reach the shop. The social dimension could be measured, analyzing whether the elderly usually shop 
by themselves or accompanied and observing their emotional changes. 

The main steps for the frailty assessment are: (1) to collect the demographics variables and frailty 
status labeling (pre-frail, frail, non-frail) using Fried phenotype [4]; (2) to gather data from the sensing 
devices (smartphone and smartwatch); and (3) to analyze of the collected data by using machine 
learning algorithms. 

2.2. Model Definition 

According to the previous requirements, we define the model for frailty assessment as a 
combination of sociodemographic and mobile/wearable sensors variables (Table 1). 

Several sensor variables are identified and categorized in two groups: triaxial and non-triaxial. 
The former refers to accelerometer, gyroscope, linear acceleration, and gravity sensors, and the latter 
refer to heart rate, step counter, and light sensors. The sensor variables have been proposed by 
following statistical measures such as arithmetic mean, median, standard deviation, minimum and 
maximum values, and correlation, discretizing the collected data. For triaxial sensors, these statistical 
measures are calculated by each axis. In addition, we include a magnitude variable, which is defined 
as ඥxଶ + yଶ + zଶ, where x, y, and z are the three axes of the sensor, and an amplitude variable, 
which is defined per each axis as |(c) − min (c)|, where c is the corresponding axis. 

Table 1. Variable-based model. 

Category Variable Names Instrument 
Sociodemographic   

 Age Self-report 
 Sex Self-report 

Frailty   

 Frailty Status (non-frail, 
pre-frail, frail) 

Fried Phenotype 

Wearable Sensor   
 Sensor value Heart rate, Step Counter and Light sensors 

 x, y and z axis values 
Accelerometer, Gyroscope, Linear acceleration and Gravity 

sensors 

 Correlation between x-y, x-z and y-z axes values 
Accelerometer, Gyroscope, Linear acceleration and Gravity 

sensors 

 Magnitude of x-y-z 
vector 

Accelerometer, Gyroscope, Linear acceleration and Gravity 
sensors 

 Amplitude 
Heart rate, Step Counter, Light sensors, Accelerometer, 

Gyroscope, Linear acceleration and Gravity sensors 
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3. System Design 

A system based on mobile/wearable platforms and microservices has been designed. It follows 
the IoT paradigm as introduced in [21]: “IoT system is constructed of fine-grained and self-contained 
microservices which are independently developed and deployed”. 

3.1. General Description 

A microservice is responsible of a single task (i.e., with minimum level of responsibility) thus 
enabling its update independently of the rest of microservices and ensuring the maximum decoupling 
and extensibility. There are two types of microservices [23]: Functional microservices (FM) and 
Infrastructure microservices (IM). FM are in charge of supporting business functions and operations, 
can be shared and accessed externally via an API layer. IM are responsible of lower level tasks such 
as monitoring, information communication and microservices interaction. They provide a local 
context and are not exposed to the outside client requests (e.g., due to security issues). 

The API gateway is the interface to aggregate microservices. It can distribute information to 
external clients (applications and other microservices) through communication endpoints. The clients 
can also be deployed everywhere (mobile/wearable devices, cloud, and desktop). External software 
applications and microservices can act as clients by sending requests. 

The microservices architecture maximizes autonomy and decoupling [24]. Service choreography 
is usually preferred to orchestration, which needs a central mediator to coordinate multiple services. 
Usually, microservices architecture lacks a middleware component for the orchestration, therefore it 
cannot support solutions based on the use of an Enterprise Bus Services (EBS) present in the SOA 
pattern [23]. If orchestration is required, an alternative is the publish/subscribe pattern, where some 
microservices publish events asynchronously, and other microservices subscribe to these events and 
react [24]. 

3.2. Architecture for Frailty Assesment 

The purpose of the software architecture for frailty assessment is to provide support to the 
defined model. In particular, we seek to collect and analyze data from built-in sensors from 
mobile/wearables devices on the basis of a software architecture with applications and microservices to 
be deployed in the mobile devices (smartphones/smartwatches) and cloud servers. The architecture is 
shown in Figure 1 and described as follows. 

 
Figure 1. Microservices architecture for frailty assessment. 
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3.2.1. Mobile/Wearable Functional Microservices 

Functional microservices in the wearable are related to sensors, such as Accelerometer, Gyroscope, 
etc. They require interacting, by means of an API Gateway, with other microservices deployed in the 
mobile/wearable devices and cloud server. Clients (applications and other functional services) 
deployed in the smartphone request to collect and analyze data in the cloud. 

3.2.2. Infrastructure Microservices  

Infrastructure microservices could be used in different health domains. The following infrastructure 
microservices are deployed in the cloud: (1) the Microservice Discovery is used by microservices to 
discover other functional microservices; (2) the Device Discovery is used by devices to discover 
nearby devices; and (3) the Pub/Sub enables communication of events between microservices in an 
event-driven manner (i.e., as an alternative to orchestration services), thus maximizing decoupling. 

3.2.3. Microservices and Apps in the Smartphone 

The Frailty Risk App is subscribed to the publication of frailty risk published by the Classifier 
microservice deployed in the cloud server. In the training phase, the Data Receiver microservice 
provides in real time data collected from the sensors in order to build the model (Table 1). In the 
classification phase, the Classifier microservice provides a frailty classification based on the model 
for risk frailty assessment. As an ongoing extension, the social and psychological dimensions of frailty 
could be addressed by new functional microservices. The People Proximity App can provide a list of 
identified people around the elderly. The Orientation Help App shows the participant the route based 
on the information provided by the GPS. In addition, other environmental-oriented microservices 
(e.g., Ambient Noise), could contribute to assess frailty in a holistic way. 

3.2.4. Machine Learning Functional Microservices 

The system includes functional microservices to provide advanced data analysis to assist the 
experts on frailty assessment (clinical decision making) by following a data-driven processing 
approach. In particular, we implement supervised learning methods [19]. The Machine Learning 
microservices work in choreography. They are started by an API request from the Frailty Risk App 
to the Data Receiver microservice, which is in charge of receiving and parsing raw data collected 
from sensors. The resulting dataset is a matrix where the rows represent participants, and columns 
represent variables in the model defined in Table 1. This matrix is the input of the Train/Test Splitter 
microservice, which divides stratified partitions for training and testing the model. The Feature 
Selector microservice performs a feature selection method to obtain the most relevant variables. The 
Model Selector microservice uses different Machine Learning algorithms such as kNN, SVM, 
Random Forest, etc. Each algorithm is implemented by a microservice, which tunes their parameters 
and evaluates the resulting model with the 5-fold stratified cross validation technique, thus obtaining 
the best performance model. The Classifier microservice requests to the Model Selector microservice 
the learned model. Finally, the Classifier microservice performs the classification (“pre-frail”, “frail”, 
or “non-frail”) to be sent to the Frailty Risk microservice. 

3.3. Frailty Risk Notification Example 

Figure 2 shows in detail some specific microservices in enacting for the frailty risk notification. 
Firstly, the Frailty Risk App deployed in a smartphone requests to start the data collection to all 

the functional microservices in the smartwatch. For the sake of simplicity, only the accelerometer and 
the heart rate microservices are shown. The request publication is issued to the cloud Gateway API, 
which is based on Topics 1 (movement/accelerometer) and 2 (vitalsignals/heartrate). The API could also 
be a REST API or a gRPC. Then, Frailty Risk App starts the Ambient Noise microservice deployed in 
the same device (smartphone) with a simple request. Afterwards, the sensors start to publish their 
own collected data to the API Gateway deployed in a cloud server on the basis of Topics 1, 2, and 3 
(ambient/noise). The Data Receiver microservice (deployed in the cloud) is subscribed to all of these 
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topics related with the sensor microservices. Thus, when these microservices publish the data that 
they are collecting, the API Gateway sends these data to Data Receiver microservice. Later on, the 
Data Receiver sends these data to the Classifier microservice with a request. This microservice 
requests the best model trained by the Model Selector microservice. The Classifier microservice 
receives the model by sending another request, thus enabling the frailty risk prediction. The result is 
published through the Topic 4 (prediction/frailtyrisk), to which the Frailty Risk App is subscribed for 
notifying the real risk of frailty. 

 
Figure 2. Frailty Risk Notification Example. 

4. Technical Validation 

A pilot study has been carried out for the technical validation of the system prototype by end-
users, i.e., experts and elderly. The participants were five adults from community centers in Granada 
(Spain); three women (1 frail and 2 non-frail) and two men (1 frail and 1 non-frail). The arithmetic 
means were: 84 years old; none/primary educational level; and 2 children. The inclusion criteria were 
to be aged 65 years and older; without cognitive impairment, measured through the Mini-mental 
State Examination (i.e., the scale to evaluate the cognitive state of the person [25]) with a result lower 
than 16. The participant frailty status was assessed by using the Fried phenotype [4]. 

All the participants performed the IADL “do shopping” following the next protocol. Participants 
start sitting on a chair without armrests, with €1 in their pockets and wearing the smartwatch in the 
non-dominant hand. A therapist, who is in charge of the activity supervision, pushes the start button 
in the smartwatch to start capturing data. Then, participants stand up and walk for 50 m to the store. 
At the entrance of the store, the therapist indicates to the participants where the soft drinks aisle is. 
Participants collect a 300 mL water bottle and pay it (receiving change back). Finally, participants go 
back to the starting point, sit down on the chair, and the therapist pushes the stop button. 

To collect physiological data while performing this activity, we developed a software app 
deployed in a sensing Samsung Gear S3 smartwatch. An offline R script was used to extract all of the 
variables from the defined model (Table 1). This allows us to validate the system-provided frailty 
with the Fried-based status. 
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We used the preliminary exploratory data analysis (EDA) with the designed systems. The EDA 
reported that heart rate data could be a relevant feature to distinguish between frail and non-frail 
individuals (Figure 3), because they have distinct values. 

 
Figure 3. Preliminary exploratory data analysis (EDA): comparison between frail and non-frail 
individuals. 

In frail individuals, the values are between 50 and 100, and in non-frail individuals, the values 
are between 80 and 100. In addition, mean values were less than 88 in frail individuals, and greater 
than this in non-frail individuals. This sample is not representative, but the system is technically 
ready to assess frailty in a larger sample and consider more variables from the sensors and test. 

What we could validate with this pilot was the usability, acceptance, and viability of the technological 
solution. Elderly were informally assessed in a “real-world” setting while performing the “do shopping” 
IADL as in [26]. The therapist observed the users while they were participating in the IADL, and 
interviewed them about this experience, asking whether the wearable affected their comfort and 
mobility. The main findings are in line with those of Ehmen et al. [27], the system: (1) can be used by 
people with low cognitive or low sensorimotor abilities; (2) requires little time of use (in our case just 
to press one bottom); (3) does not require any technological competence; and (4) does not require 
extra personnel to train the users or to use the system. All the participants reported that the system 
was simple to handle and could be used in an independent way, although a brief initial lesson is 
required to know how to use the basic functions on the smartwatch (start and stop). Participants also 
reported it is easy to learn and wear, and the collected data is secured. All of these attributes are the 
most frequently used to evaluate usability. 

5. Conclusions and Future Work 

Currently, most of the approaches to address frailty assessment are experimental studies that 
use the traditional methods (i.e., manual questionnaires). New instruments should be used to assess 
frailty and its related factors. To the best of our knowledge, there is no proposal to make the 
assessment in an ecological way. 
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Since the prevention of frailty is important to guarantee active ageing, we have proposed the 
design of a smart mobile health system to assess frailty status and to predict it in the future. The 
system automatically collects data in an ecological way supporting a defined variable-based model 
and analyzes the data using a Machine Learning technique. This system is designed to support the 
ecological frailty assessment through the IADLs performed by elderly in a reliable and non-intrusive 
way, thanks to the use of mobile computing technologies. It could be easily extended to manage 
future data sources and functionalities with additional capabilities by using other mobile/wearable 
devices and the microservices-oriented design approach. By following the ecological approach, a 
holistic frailty assessment is feasible by collecting data from more sensors, thus addressing other elder 
ageing decline situations (e.g., Alzheimer). 

The frailty assessment of the proposal has been carried out by a bigger group of end users 
(experts and elderly) for technical validation purposes in terms of acceptance, usability, and viability 
of the implemented prototype, with some interesting results. The proposed system could help 
professionals to assess, and to perform personalized interventions in the form of IADLs to decelerate 
or even improve the frailty status. Elderly could receive suggestions to improve their status, based 
on notifications, in an adapted and personalized way and under professional supervision, according 
to his or her real frailty status. 

Current work is focused on the development of a formal study accomplished in a holistic way, 
with about 100 participants. It will allow us to collect enough data to perform a statistical analysis 
and artificial intelligent analysis. The system will also allow health professionals to design 
personalized and adapted intervention programs. The aim will be to provide a personalized 
healthcare system to assists elderly in promoting active ageing and independence. In addition, we 
need to address other features such as data protection and security, and additional technological 
restrictions (such as battery consumption and network disconnections). 
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