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Abstract: Over the last few years, pervasive systems have seen some interesting development.
Nevertheless, human–human interaction can also take advantage of those systems by using their
ability to perceive the surrounding environment. In this work, we have developed a pervasive
system – named CLASSY – that is aware of the conversational context and suggests documents
potentially useful to the users based on an Information Retrieval system, and proposed a new scoring
approach that uses semantics and distance based on proximity data in order to classify the relationship
between tokens.
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1. Introduction

Over the last few years, discussions regarding pervasive computing have become more common,
and it has seen some great development [1–4], due to the overall innovations and possibilities inherent
to this concept and mainly to the fact that our surrounding environment is becoming even more
monitored every day [5–7].

Unlike traditional computing systems, a pervasive system requires a feed of constant data about
its surrounding environment, acquired by sensors of the most various types, ranging from hardware
sensors, like temperature and location, to software, such as agents that parse tweets or messages on
a chat room. These sensors capture and provide data in a non-invasive way, enabling the “ability to
adapt to changing circumstances and respond based on the context of use” [8].

This sense of context can be used in many fields, such as a conversational one, which will
be addressed in this paper. Here, context is somewhat related to the topic on which the whole
conversation is unfolding. By perceiving this context, it allows the proposed application to enhance the
communications through useful suggestions, as the conversational system takes some actions towards
helping users regarding that specific context. This is useful in many situations, such as developer
forums or technical support services, since it introduces an intermediate layer between the sources (the
user and the developer, respectively) and the target (the technician and the issues/code, respectively)
that enhances and facilitates their relationships by using the suggestions to the contexts the source
is perceiving.

Along with the direct interaction with the users, the problem of conversational intrusion comes up.
A system that faces constant human interaction should have conversational intelligence, enabling it
“to actively participate in the conversation and to demonstrate awareness of the topic discussed,
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the evolving conversational context, and the dialogue flow”. This ability is powered by following
some social rules like proactivity and conscientiousness in order to make the system more useful and
less intrusive [9].

2. Related Work

Over time, a lot of effort was made to build systems capable of facilitating not only the
human-computer interaction but also the human-human interaction [10,11]. In the context of this
paper, the latter will be the focus, where recommendation systems are included, which, based on the
processing of historical data, make suggestions that may be relevant to the end-user.

Popescu-Belis, Boertjes, Kilgour, Poller, Castronovo, Wilson, Jaimes, and Carletta [12], in a
project named Automatic Content Linking Device (ACLD), created a Just-in-Time Document Retrieval
(JIT-DR) system, whose use case was a meeting environment, where the system performed document
suggestions that might be relevant to the conversation topic. The data was collected through Automatic
Speech Recognition (ASR) at fixed time intervals to ultimately perform a pre-built database search. The
collected data was pre-processed in order to only retain the keywords by applying some techniques
such as stop-words removal and stemming. The keywords were then grouped to build an implicit
query and sent to the Information Retrieval (IR) system, whose job was to return the documents that it
found relevant. Finally, the returned document list is ordered by relevance. Given that the proposed
techniques and architecture are simple and easily extrapolated, they can be considered a good starting
point when it comes to building a suggestion system, thus they will be used as the baseline for our
system. However, the simplicity associated with their work raises some questions when it comes to
the ability to deal with complex and noisy input. Unfortunately, as no results were provided in this
paper nor in subsequent publications, the effective use of this architecture was left open.

Sometime after Popescu-Belis et al. published their work in [12], Popescu-Belis (one of the authors
of the above work) and Habibi [13] studied the problem related to the extraction of keywords in a
conversational environment, based on the ACLD system above described. They focused their efforts
on solving the issue regarding the fact that a conversational context is not always bound to one specific
topic but to a lot of them, which introduces a lot of uncertainty when analyzing the main conversational
topic and making a suggestion based on it. Compared to the previous work and taking into account the
latter proposed ACLD system, the main difference settled in an intermediary step before the implicit
query formation, which first tries to extract the main topics, based on the selected keywords, and only
then builds topic independent implicit queries to submit to the IR system. The results of all these
implicit queries are then merged, ranked based on the topic similarity, and only the top document
of the results list gets to be suggested to the user. The system was compared with other existing
keyword extraction methods through judgments of human raters recruited via Amazon Mechanical
Turk and showed that their system “provides on average the most representative keyword sets, with
the highest α-NDCG value, and leading–through multiple topically-separated implicit queries–to the
most relevant lists of recommended documents” [13].

Another similar work with a common goal was developed by Tate and R.Nandwalkar [14],
where a JIT-DR system was developed to make suggestions in an enterprise meeting environment.
Even though the logic associated to this system was really similar to the ACLD one, here the authors
used a subsequent step following the extraction of keywords that consisted in using the Metaphone [15],
an algorithm published by Lawrence Philips in 1990, composed by 19 rules that enhance the matching
of words whose phonetics are similar. This algorithm was not used to perform word matching, which
was its original purpose, but instead to use its internal processes as a means to reduce word length
and speed up the analysis step. The authors compared this new keyword extraction approach with a
simpler one similar to the proposed by Popescu-Belis et al. in the ACLD, and concluded that their new
approach extracts more keywords for different input, leading to higher final accuracy.

Recently, Benítez-Guijarro, Callejas, Noguera, and Benghazi [16] have proposed a different
approach, whose goal was to tackle the lack of flexibility regarding keyword extracting techniques.
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They intended to “improve the current state of the art related to the interaction between nutritional
coaching software systems and their users” by introducing a syntactic and semantic analysis of
sentences instead of keyword spotting. To attain that, they analyzed and decomposed the sentences
to find a common structure between the users’ messages that are based on some general entities like
actions, quantifiers, ingredients, etc. These entities and their dependencies allowed them to use a
rule-based approach to interpret the meaning of the sentence, so that, by looking at the information
associated with each valuable syntagma, through a knowledge database, the nutritional information
associated with the sentence could be computed. Even though this approach works well in a specific
domain, such as the demonstrated nutritional context, where the authors achieved a 96% accuracy
compared to the 44% of the keyword extraction, in a general context it is impractical, since it would
require the definition of a set of semantic rules to interpret the meaning of the input and that are able
to interpret every imaginable situation, which is infeasible.

3. Document Recommendation Problem and the CLASSY Solution

The specific problem addressed by this paper is the suggestion of information in a conversational
environment. The suggested documents can be of the most various formats, from Portable Document
Format (PDF) to simple text files; however, they must be text-based, since the techniques that will be
described in the next sections were developed to handle text. The conversational environment can also
take many forms, ranging from tweets, usually with a limited number of characters, to chat rooms,
where messages can reach thousands of characters.

The proposed CLASSY system follows the rules of a pervasive system, by being based on data that
is collected without human interaction and by being robust and useful so that it only makes suggestions
when it has a certain degree of certainty regarding its recommendation, therefore, preventing the
user from constantly being interrupted by system interactions. Its overall architecture, illustrated in
Figure 1, is essentially divided into three blocks – context processing, IR system, and suggestions filter
and cache.

Context
processing

Information
Retrieval
System

Indexed
documents

Suggestions Filter
and Cache

Users
messages

Suggestions
List

Figure 1. CLASSY architecture, that is essentially divided into three blocks – context processing,
responsible to find the most relevant tokens and manage the context; IR system, which has previously
indexed the documents that are considered relevant to the users or conversational topics; and
suggestions filter and cache, are responsible for analyzing the document list retrieved by the IR
system, applying some filters to it, and cacheing the suggestions.

3.1. Context Processing

The context processing block is where user messages are processed in order to find the most
relevant tokens – the keywords. This block is composed of the following steps:

• Relevant token extraction, which uses an analyzer defined in the IR engine to apply a set of
processing techniques to the considered text. This analyzer is used both in the indexing phase
(the documents list) and in the query phase, to force the query tokens to follow the same rules and
have a similar syntax to the documents indexed tokens. The analyzer pipeline is the following:
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1. UAX29 URL Email Tokenizer, which splits the text field into tokens, using white spaces and
punctuation as delimiters. Delimiter characters are discarded, with the exception of dots
that are not followed by white space, words with hyphens that contain numbers, internet
domain names containing top-level domains validated against the white list in the IANA
Root Zone Database, URLs and email, IPv4 and IPv6 addresses;

2. Length filter, that removes words whose length is smaller than 2 and exceeds 12. These
values are a fair compromise considering the average word lengths of the various existing
languages (http://www.ravi.io/language-word-lengths) to filter small irrelevant words and
also the bigger ones, which are atypical;

3. Lower case filter, that transforms any uppercase letters tokens to the equivalent
lowercase one;

4. Stop word filter, that discards or stops the analysis of tokens that are on a given provided
stop words list;

5. Snowball Porter Stemmer, which is a language-specific stemmer generated by Snowball,
a software package that runs pattern-based word stemmers;

6. Length filter, which removes words whose length is smaller than 2 and exceeds 10. This filter
follows the same logic as the previous one but now considering smaller words resulting
from the stemmer process.

For every token set of each analyzed query, its Inverse Document Score (IDF) is computed,
discarding tokens whose value sited under a certain threshold (a system parameter that, for
now, should be defined manually by finding the value that attains a good compromise in
terms of filtering the most irrelevant tokens), essentially those that do not show sufficient
informative interest;

• Context update, a stage where the context is updated with the new tokens resulting from the
previous step. This context has a specific size, and it is defined by the relevant tokens of the last
n queries;

• Implicit query formation, where the query is built with the disjunction of the context entries,
boosted with its recency (the position in the context). This implicit query is then sent to the
IR system in order to get the result list that will contain documents likely relevant to the user.
An example of this stage is shown in Figure 2, where Q∗ are the queries, RTQ∗ are the relevant
tokens from each query, and IQ is the resulting implicit query:
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Figure 2. Implicit query formation, based on the disjunction of the extracted context entries
(relevant tokens), boosted with its recency.

Additionally, the use of a large set of topics and context in the conversational scenario will result
in an increase of noise perceived by the system. For that, it is necessary to create a negative class
document that would contain a rather large historical registry of exchanged messages. Implicit queries,
including the mentioned negative class in its result list, are seen as having more noise associated with
its context, thus not adding value as a suggestion source. This negative class is put into practice in the

http://www.ravi.io/language-word-lengths
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form of a noise file system. This system has a maximum size, which defines the number of noise files
that can be created and used as the negative class. As mentioned, these files containing the historical
registry of exchanged messages are populated via a round-robin approach so that after the last possibly
created file exceeds a specific size, the first one is emptied and filled with the most recent messages.

Moreover, as a user, it is not very pleasant to be constantly bombarded with suggestions after
every single message, especially if some of them may not be as useful as one would like. In that
regard, the suggestion system should only suggest new documents with a distance of n messages.
This behavior not only reduces the invasive presence of the suggestion system but also refines its
suggestions, since every suggestion is able to take into account more contextual information provided
by the message window.

However, sometimes, instead of talking about a specific topic, people explicitly refer to some
related keys. In this field, a topic can take a lot of forms, by being the title of a document, the author
of a tweet, the key of an issue, and so on. This type of interactions are not context but specific topic
matches, thus it is useful to perform a direct search for them. With that in mind, a simple query is built
by using all tokens in the received message and trying to find a direct match between the query and
the document, based on the field that we expect to find (the title, author, key, etc.) If a hit occurs, then
the result of this stage is favored over the context results.

3.2. IR System

The IR system will previously index the documents that are considered relevant to the users or
conversational topics. Assuming that, its job is to receive the queries built from the Context Processing
block and then set up a list of relevant documents according to those queries.

3.3. Suggestions Filter and Cache

The suggestions filter and cache blocks are responsible for analyzing the document list retrieved
by the IR system, on which some filters are applied and ultimately cache the suggestions.

The first one, and the most logical, is filtering the list of documents by its own score, since only
documents with a score above a certain threshold are considered to have enough value to be used as a
suggestion to the user. This threshold, as the IDF one, is a system parameter that, for now, should be
defined manually by finding the value that attains a good compromise in terms of the usefulness of
the results.

To increase the value of the suggestions and minimize the conversational intrusion of the system,
a suggestion cache must be created, whose goal is to avoid making the same suggestion in consecutive
or almost consecutive time-stamped messages, since it does not add any value to the user. This cache
also works by establishing a maximum time constraint in which a document is considered to be
valuable again; thus, it can be discarded from the suggestion cache when it steps behind that
limit. This maximum time constraint is defined manually since it is a subjective parameter that
is domain-dependent.

3.4. Neighbourhood Approach

To include a more pervasive behavior, a different approach – named neighbourhood approach –
was taken, which tries to use semantic similarity related to each word as a mean to get similar contexts.

Semantic distance/similarity is a property of lexical units, typically between words, but this
notion can be generalized to larger units such as phrases, sentences, etc. Two words are considered
semantically close if there is a lexical-semantic relation between them. There are two types of lexical
relations: classical relations (such as synonyms, antonyms, and hypernyms) and ad-hoc non-classical
relations (such as cause-and-effect). If the closeness in meaning is due to a certain classical relation,
then the terms are said to be semantically similar. On the other hand, semantic relatedness is the
term used to describe the more general form of semantical closeness caused by any semantic relation.
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For instance the nouns ”liquid“ and “water” are both semantically similar and related, whereas the
nouns “water” and “boat” are semantically related but not similar.

There are a lot of types of semantic measures, but we are interested only in ones – corpus-based –
that are based only on co-occurrence statistics from large corpora. They rely on the hypothesis that
words with similar contexts tend to be semantically close [17]. The set of contexts of each target word
u is represented by its distributional profile, the set of words that tend to co-occur with u within a
certain distance, along with numeric scores signifying this co-occurrence tendency with u. This profile,
introduced by M. Antunes, D. Gomes, and R. Aguiar [18] is defined as:

P(u) = [{w1, o(u, w1)}; ...; {wi, o(u, wi)}] (1)

where u is the target word and o(u, w) the number of times that w occurs near to u.
The building process of those vectors is described in Figure 3, where D∗ are the contents of the

documents, RTD∗ the relevant tokens from each document, and the neighborhood representation is
given by the vector with each neighbor and its magnitude.
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Figure 3. Neighbourhood vector creation of the report token based on three messages, considering a
neighborhood window of 2 and 1.

Having built the neighborhood of all relevant tokens of a document, it is possible to obtain
a neighborhood score between any two relevant tokens, by computing the inner product, and
not only the cosine similarity – since we are interested in the magnitude of the similarity – of its
neighborhood vectors:

NS(u, v) = |u| × |v| × cosine(u, v) (2)

cosine(u, v) = ∑n
i=1 o(u, wi)× o(v, wi)√

∑n
i=1 o(u, wi)2 ×

√
∑n

i=1 o(v, wi)2
(3)

This score is a good indicator of how related two tokens are, and inherently how can they refer to
the same context.

The process of building neighborhoods and computing their scores was implemented inside the
IR engine, resorting to all the potential and efficiency of the Lucene’s internal structures that enabled
the handling of individual token analysis. This allowed us to use the neighborhood score, based on
the implicit query, as the value used to re-rank the top n documents retrieved by the Lucene engine to
improve the contextual analysis of each document. The steps towards computing the neighborhood
score, illustrated in Figure 4, are:

1. Neighbourhood pair computing – the neighborhood vector of each document token will be
compared with the neighborhood vector of each query token. The score associated with each
individual document token results of averaging all comparisons;
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2. Intermediate sub-query value computation – the score associated between each document and
each sub-query will be the average of the neighborhood scores computed as above described;

3. Recency boost – each sub-query has a boost that is associated with its recency. The final score
associated with each document and each sub-query will come from the multiplication between
the recency value and the intermediate value above presented;

4. Final score – The final document score will be the sum of all neighborhood values computed
between each document and each sub-query.

( x1 x2 )^rb1 OR ( y1 y2 )^rb2

D0 : a0   a1   a2   ...  an

D1:  b0   b1   b2   ...  bn

...

Dn:  z0   z1   z2   ...  zn

...

QV1

Documents
list

Documents
relevant
tokens

3

4

2

1

Figure 4. Neighbourhood score computation steps, composed by the neighbourhood pair computing,
intermediate sub-query value computation, recency boost, and final score computation.

4. Evaluation

Since the main goal of this work was to build a recommendation system running in a
pervasive way, a mature and robust framework was used that serves as the cornerstone of the IR block
presented in the last section – Solr (https://lucene.apache.org/solr/). Solr is an open-source search
platform from the Apache Lucene project, which features full-text search and real-time indexing and
provides distributed search and index replication, whose design was made with scalability and fault
tolerance in mind. Furthermore, Solr allows developers to add plugins that can use the indexed data
and its structures to modify and enhance the retrieved results.

In order to create a comparative benchmark to evaluate the proposed CLASSY system,
we implemented a base approach, that uses the blocks described in the Section 3 without making
any enhancements to the IR block nor its score method, whose goal is to add value to the system by
developing a valuable pre-processing step of the messages and post-processing of the result list.

Then, we implemented the full CLASSY system, by using the neighborhood approach
(described in Section 3.4) as part of our system in order to fully potentiate its pervasive behavior.

To assess the performance of every presented strategy in Section 4, a series of tests were conducted
on a dataset containing approximately 2330 messages, originally from an internal chat used by a team
of developers of a specific company working with contact center services. The indexed documents
were the content of JIRA (https://www.atlassian.com/software/jira) issues created by the team, with
the goal of, given the conversational context, suggesting the issue they might be talking about. The
objective was to suggest a single issue, rather than a list; therefore, in all conducted tests, the suggestion
that was made always respects the top document on the results list.

https://lucene.apache.org/solr/
https://www.atlassian.com/software/jira
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5. Results

As already mentioned in the above section, besides taking different approaches, other small
improvements and features were added.

Regarding the base approach, the first thing to analyze is the minimum document score and
its impact on the results. This study is shown in Table 1. As one might observe, there is a big
difference between the total number of performed suggestions and those which are considered useful.
This contradicts what was mentioned about the amount of noise resulting from the messages.

Table 1. Base approach – minimum document score impact.

Minimum Document Score Total Suggestions Useful Suggestions Accuracy

10 476 89 18.70%
20 232 64 27.59%
30 171 22 12.87%

Taking into account the proposed solution to overcome this issue, the noise files system was then
implemented. The next step was to study the impact of the number of noise files in the final result.
These results are shown in Table 2. On those tests, the minimum score was maintained at 20, since it
was the one showing the best results (and the most logical ones). As it is possible to see, the use of the
noise files system not only reduced the total suggestions but also increased the proportion of useful
ones. Here, the setup with three noise files also showed to be the best compromise in terms of accuracy.

Table 2. Base approach + Noise files system – number of noise files impact.

Number of Noise Files Minimum Document Score Total Suggestions Useful Suggestions Accuracy

1 20 89 39 43.82%
2 20 102 47 46.08%
3 20 119 67 56.30%
4 20 131 69 52.67%

Using the above approach as the baseline, it is interesting to tune the system in order to make it
more pervasive. With that in mind, we investigated the impact of the number of messages between
consecutive suggestions in the results, as showed in Table 3. As it is possible to observe, these results do
not show a systematic evolution, since they are very dependent on the position of the useful messages
along with the conversation. However, for the analyzed dataset, one and five messages between
suggestions showed to be the best compromise in terms of accuracy, with the first one being more
intrusive, as it is logical.

Table 3. Base approach + Noise files system – number of messages between suggestions impact.

Messages between Number of Minimum Total Useful AccuracyRecommendations Noise Files Document Score Suggestions Suggestions

1 3 20 119 67 56.30%
2 3 20 78 29 37.18%
3 3 20 55 29 47.27%
4 3 20 46 21 45.65%
5 3 20 32 18 56.25%
6 3 20 24 7 29.17%

Finally, the neighborhood approach, which is slightly different from the base one when it comes to
scoring the documents, since the latter uses the Lucene score, which is a variant of the TF-IDF scoring
method, while the first computes the score based on the neighborhood vector comparison, as shown in
Section 3.4.
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Regarding this approach, the first thing to investigate is the neighborhood window, which defines
the maximum distance between two tokens that makes them neighbors. The results in Table 4 showed
that using a window size bigger than one will add a considerable amount of noise, thus resulting in
much more invasive and useless suggestions.

Table 4. Neighbourhood approach – window impact.

Window Number Minimum Total Useful AccuracySize of Noise Files Document Score Suggestions Suggestions

1 3 17 39 27 69.23%
2 3 17 70 27 38.57%
3 3 17 140 39 27.86%

Having set the neighborhood window size, it is time to analyze again the impact of the minimum
document score in this approach. The results obtained with this method, presented in Table 5, are very
interesting. As we increase the minimum document score, the accuracy also increases, with a notorious
value of 80.65% of accuracy for a score of 23. Although these results seem optimistic, the reason for this
sudden increase in accuracy is the decrease of contextual suggestions in relation to the direct matches
performed by the system, which essentially is a behavior to avoid.

Table 5. Neighbourhood approach – minimum document score impact.

Minimum Number Window Total Useful AccuracyDocument Score of Noise Files Size Suggestions Suggestions

5 3 1 162 34 20.99%
8 3 1 99 31 31.31%
11 3 1 74 29 39.19%
14 3 1 51 27 52.94%
17 3 1 39 27 69.23%
20 3 1 35 26 74.29%
23 3 1 31 25 80.65%

In order to mitigate the mentioned behavior but still use its inherent advantages, a new hybrid
approach has been proposed that merges the scoring method of both the base and neighborhood
approaches, by computing both their values and multiplying them, to make the general scoring
method more robust. The results in Table 6 showed that the hybrid approach performance is a good
compromise between being pervasive and making useful suggestions (contextual and direct). However,
it was observed that when the minimum document score exceeds 160 the behavior the above approach
showed starts to rise again, and the contextual suggestions start to decrease.

Table 6. Hybrid approach – minimum document score impact.

Minimum Number Window Total Useful AccuracyDocument Score of Noise Files Size Suggestions Suggestions

40 3 1 142 40 28.17%
60 3 1 97 38 39.18%
80 3 1 71 35 49.30%

100 3 1 61 31 50.82%
120 3 1 47 29 61.70%
140 3 1 46 29 63.04%
160 3 1 41 28 68.29%
180 3 1 38 27 71.05%
200 3 1 36 27 75.00%
220 3 1 35 27 77.14%
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6. Conclusions and Future Work

Users demand systems that are pervasive and not invasive. In this paper, we proposed a system –
named CLASSY – that follows those rules so that it is able to be aware of the context where the users
are integrated and make suggestions that prove to be useful to them.

Along with the development of CLASSY, we faced several problems related to the acquisition
of context as well as dealing with all uncertainty and noise associated with human speech. Those
problems led to the introduction of specific features, such as the noise files system, that made the
system more robust and useful.

The use of a mature information retrieval engine and all its features potentiated the development
and results of a system like that, and the alliance of the IR engine used with the new proposed
neighborhood score provided a way to enhance the behavior and the results of this system.

As future work, we plan on adding intelligence to this system, by allowing it to learn from user
feedback. For that, we should associate each document-query pair with a specific weight which will
reward good suggestions and punish the opposite. The variations in this weight will result from
users’ implicit feedback, and they will make the system smarter as they increasingly interact with it.
To accomplish this, the system will have to be executed in a live conversational environment, which
can make it possible to ignore the logical disadvantages of using offline datasets.
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