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Abstract: Recently, the vulnerability of automatic speaker recognition systems to spoofing attacks 
has received significant interest among researchers. A robust speaker recognition system demands 
not only high recognition accuracy but also robustness to spoofing attacks. Several spoofing and 
countermeasure challenges have been organized to draw attention to this problem among the 
speaker recognition communities. Low-level descriptors designed to detect artifacts in spoofed 
speech are found to be the most effective countermeasures against spoofing attacks. In this work, 
we used Fisher vector encoding of low-level descriptors extracted from speech signals. The idea 
behind Fisher vector encoding is to determine the amount of change induced by the descriptors of 
the signal on a background probability model which is typically a Gaussian mixture model. The 
Fisher vector encodes the amount of change of the model parameters to optimally fit the 
new- coming data. For performance evaluation of the proposed approach we carried out spoofing 
detection experiments on the 2015 edition of automatic speaker verification spoofing and 
countermeasure challenge (ASVspoof2015) and report results on the evaluation set. As baseline 
systems, we used the standard Gaussian mixture model and i-vector/PLDA paradigms. For a fair 
comparison, in all systems, Constant Q cepstral coefficient (CQCC) features were used as low-level 
descriptors. With the Fisher vector-based approach, we achieved an equal error rate (EER) of 
0.1145% on the known attacks, 1.223% on the unknown attacks, and 0.668% on the average. 
Moreover, with a single decision threshold this approach yielded an EER of 1.05% on the evaluation set. 

Keywords: spoofing detection; CQCC; Fisher vector; GMM; i-vector; PLDA 
 

1. Introduction 

In a spoofing attack, a person or computer program tries to impersonate the legitimate user of 
an authentication system. Some examples of voice spoofing attacks are impersonation, replay, speech 
synthesis, and voice conversion. Replay attacks are also known as presentation or physical access 
attacks. The remaining three attacks are called logical access attacks [1–5]. With the increasing 
influence of smart devices in our daily lives, the use of biometric systems is becoming popular in 
various applications such as phone unlock, access control, smart home assistance, and security. 
Biometrics, such as voice, face, fingerprint, and iris, are widely utilized for person authentication due 
to their intrinsic distinctiveness and convenience to use. Voice, as one of the most popular modalities, 
has received increasing attention in academia and industry in recent years. While speaker recognition 
systems gain popularity, fraudsters present various voice spoofing attacks to the system and attempt 
to gain illegitimate access to the authentication system. This problem has attracted the interest of both 
speech synthesis and speaker recognition researchers. With recent advances in speech synthesis and 
voice conversion approaches based on deep neural networks (for example, end-to-end direct 
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waveform modeling, generative adversarial networks (GANS)) [6–9] and combined with the 
availability of open-source toolkits online, spoofing attacks generated by speech synthesis and voice 
conversion techniques are potentially more serious [1–4]. A robust speaker recognition system 
demands not only high recognition accuracy but also robustness to spoofing attacks to provide users 
with secure and convenient ways to access their personal information. Hence, voice anti-spoofing is 
crucial to prevent automatic speaker recognition systems from a security breach. Figure 1 shows a 
voice anti-spoofing system incorporated with an automatic speaker verification (ASV) system. The 
speech signal from the claimed identity (can be genuine or spoofed) is first passed through an ASV 
system for verification. If found to be non-target, the claimed identity is rejected. If accepted by the 
ASV system, then the speech signal is passed through the spoofing detection system to make sure 
that the claimed speech is genuine. The claimed identity is rejected if it is detected as spoof by the 
spoofing detection system. 

 
Figure 1. Spoofing detection system incorporated with an automatic speaker verification framework. 
The speech signal from the claimed identity is passed through the spoofing detection system only 
when it is accepted by the speaker verification system. 

Extraction of anti-spoofing features or countermeasures play a key role in the detection of 
spoofing attacks. Various low-level descriptors have been developed and investigated as 
countermeasures since the susceptibility of voice biometrics to spoofing attacks was recognized by 
the research community. During and after the ASVspoof2015 challenge, many countermeasures 
based on spectral amplitude, phase [5,10–17], combined amplitude-phase [11–13], and tandem [11,12] 
have been used for spoofing detection. In ref. [10], the constant Q transform-based cepstral coefficient 
(CQCC) countermeasure was proposed and evaluated on the first edition of the automatic speaker 
verification spoofing and countermeasures challenge (ASVspoof2015) corpus. Infinite impulse 
response-constant Q transform (IIR-CQT)-based cepstral coefficient (ICQC) features were 
investigated in ref. [11] using discrete cosine transform (DCT) and principal component analysis 
(PCA) decorrelation methods. Some recent studies using the ASVspoof2015 corpus include pitch 
contour and strength of excitation [17] for spoofing detection. 

In this work, our main goal was to demonstrate the effectiveness of Fisher vector representations 
derived from low-level descriptors (e.g., CQCC) of the signal for spoofing detection task. Fisher 
vector encoding was originally introduced in ref. [18] as a paradigm to build a discriminative 
classifier from a generative model. It was later identified as an effective utterance level representation 
technique for various computer vision applications such as image classification and large-scale image 
retrieval [19,20]. The basic idea behind Fisher vector encoding is to construct a generative model of 
local features (i.e., low-level descriptors) and use the gradient of the log-likelihood of a particular 
feature with respect to the model parameters as the feature’s coding vector [18–20]. 

Fisher vector with cascaded non-linear normalization has been applied to classify the eating 
condition of a speaker from his/her recording for INTERSPEECH 2015 computational paralinguistic 
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challenge [21]. In this paper, we propose the use of Fisher vector encoding for voice spoofing 
detection task. Fisher vector can be used in combination with a linear support vector machine (SVM) 
or with a probabilistic linear discriminant analysis (PLDA) classifier. Here, we employ a PLDA 
backend for modeling bonafide and spoof classes. 

The rest of the paper is organized as follows: Section 2 describes the low-level descriptor 
considered as countermeasures for this work. Sections 3 provides a description of the baseline 
spoofing detection systems considered herein. Fisher vector-based spoofing detection systems are 
presented in Section 4. Experimental results are reported and discussed in Section 5 and conclusions 
are drawn in Section 6. 

2. Low-Level Acoustic Features as Spoofing Countermeasures 

In the course of first (ASVspoof2015) and second (ASVspoof2017) speaker verification and 
countermeasure challenges and subsequently, it became clear that the most effective 
countermeasures against spoofing attacks are low-level acoustic feature (LLAF) or low-level 
descriptors (LLD). Low level descriptors (i.e., frame level features) are typically extracted at 10 ms 
intervals and designed to detect artifacts in spoof speech signal [4,11]. The most effective 
countermeasures for spoofing detection are the CQT-based cepstral coefficients (CQCC) [10], 
linear- frequency cepstral coefficients (LFCC), product spectrum-based cepstral coefficients (PSCC) 
[11–13], all pole group delay cepstral coefficients (APGDC) [13,22], linear prediction residual cepstral 
coefficients (LPRC) [13], and IIR-CQT-based cepstral coefficients (ICQC) [11]. In this work, we choose 
only CQCC low-level descriptors as countermeasures for spoofing detection on the ASVspoof2015 
challenge data. Note that, low level descriptors are also known as local or frame level features. 

Figure 2 presents a block diagram for the extraction of CQCC features as described in ref. [10]. 
After estimating CQT spectra, logarithmic compression is applied. A spline interpolation is applied 
to the estimated spectra to convert the geometric frequency scale to a linear scale. Finally, CQCC 
features are obtained by applying the discrete cosine transform. Like ref. [10], the number of bins per 
octave was set to b = 96 so that the corresponding quality factor is ( )1/ 2.^ (1/ ) 1 138Q b= − = . 

 
Figure 2. Extraction of constant Q cepstral coefficient (CQCC) features as proposed in ref. [10]. 
40- dimensional delta + double delta coefficients are used as countermeasures. 

3. Baseline Voice Spoofing Detection Systems 

For the spoofing detection task, the de facto standard is the Gaussian mixture model (GMM) 
classifier trained using maximum likelihood training and low-level descriptor (e.g., CQCC) 
combination. To compare the performance of our proposed approach we build GMM- and 
i- vector/PLDA-based spoofing detection paradigms. 

3.1. GMM-Based Framework 

In a stand-alone GMM-based system (as shown in Figure 3), given the feature vector sequence  𝑂of a test speech signal, the bonafide versus spoofed speech decision is made based on the following 
log-likelihood ratio 𝑙(𝑂) 
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where bλ  and sλ  represent GMMs for bonafide and spoof classes, respectively; ( )logb bl p O λ=  

and ( )logs sl p O λ=  are the average log-likelihood across all frames of the test speech signal 

obtained using bonafide and spoof models, respectively. 
Based on CQCC features and with 32- and 512-Gaussian components GMMs (with diagonal 

covariance) we build two baseline systems and denote them as CQCC-GMM32 and CQCC-GMM512, 
respectively. 
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Figure 3. A block diagram showing various steps of the Gaussian mixture model (GMM)-based 
stand- alone spoofing detection paradigm. 

3.2. I-vector/PLDA Framework 

The conventional i-vector representation, proposed in ref. [23], represents the dominant 
approach in the speaker recognition field. Fundamentally, i-vector is the compact and fixed-length 
vector representation of a recording of arbitrary duration. In the i-vector/PLDA framework, for a 
chosen low-level descriptor, a 512-Gaussian components diagonal covariance universal background 
model (UBM) is trained on the ASVspoof2015 training data. After that, a 400-dimensional i-vector 
extractor is trained on the sufficient statistics generated from the training data. Binary classification 
can be then performed using a generative approach such as probabilistic linear discriminant analysis 
(PLDA) or a discriminative setting such as with support vector machines. This system is built on top 
of CQCC features with a PLDA backend and used in this work as baseline. Besides, we use the system 
CQCC-A from ref. [10] as baseline and denote it here as CQCC(A)-GMM512. This baseline system 
employs 20-dimensional CQCC features (acceleration coefficients only) as spoofing 
countermeasures. 
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4. Spoofing Detection using Fisher Vector Encoding 

In Figures 4 and 5, we present schematic diagrams of the proposed voice anti-spoofing 
approaches based on Fisher vector encoding of the low-level descriptors. As local descriptors we use 
40-dimensional CQCC features. In this section, we provide a description of various steps of the 
proposed methods. 

This Fisher vector (FV) encoding is originally introduced and popularly used in computer vision, 
especially in large scale image retrieval [18–20]. The FV with cascaded non-linear normalization has 
also been applied to classify the eating condition of a speaker from his/her recording for 
INTERSPEECH 2015 computational paralinguistic challenge [21]. To the best of our knowledge, this 
encoding has not been applied for the voice anti-spoofing task. 

The main idea behind this encoding is to measure the amount of change induced by the 
utterance/video descriptors on a background probability model, which is typically a Gaussian 
Mixture Model (GMM). Fisher vector encodes the amount of change of model parameters to 
optimally fit the new-coming data. This requires the computation of the Fisher information matrix, 
which is the derivative of the log likelihood with respect to model parameters (hence the name 
“Fisher”). This encoding requires a smaller number of components in a GMM than i-vector 
representation [21]. With Fisher vector, for modeling probabilistic linear discriminant analysis and 
support vector machine classifiers are used. 

The FV encoding assumes that descriptors are generated by a GMM model with diagonal 
covariance matrices. At first, a K-Gaussians GMM model is learned on the training set. The GMM 
model is parameterized as { } 1, , ,K

k k k kwλ μ σ
=

= where kw , kμ , and kσ  represent mixture weight, 
mean and variance corresponding to the k-th Gaussian component, respectively. Once the model is 
trained, the FV representation of a set of local descriptors { }1 2, ,..., NX x x x=  is given by the two parts 
[24]: 
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where kiq  is the Gaussian soft assignment of the descriptor ix  to the k-th Gaussian. The u part 
captures the 1st order differences whereas the v part captures the 2nd order differences. With a 
d- dimensional local descriptor, the final representation of size 2dK is obtained by concatenation of 
the two parts. The dimension of extracted FV encoding is normally high. With K = 32 Gaussian 
components GMM and 40-dimensional local descriptors, the final dimension becomes 2*40*32 = 2560. 
So, we apply a principal component analysis (PCA) algorithm on the raw FV encoding to reduce the 
dimension to 600. Here, the PCA projection matrix is trained on the training data. 

Power normalization followed by L2-normalization are then applied [18–21]. Power 
normalization helps to reduce the sparsity of the descriptor and L2-normalization aids in improving 
prediction performance. We utilize a component-wise power normalization with a = 0.5 as: 

( ) ( ) af x sign x x=  (4) 

where 0 1a≤ ≤  is an optimization parameter. 
In Figure 4, we present an overview of one of the voice anti-spoofing approach based on FV 

encoding of the low-level descriptors (e.g., CQCC). The approach is comprised of two sub-systems 
where, one sub-system is based on bonafide GMM (i.e., GMM trained using bonafide training data) 
and the other sub-system is based on spoof GMM (i.e., GMM trained using spoof training data). 
Binary classification is then performed using a generative approach such as probabilistic linear 
discriminant analysis (PLDA) backend. Final scores are obtained by using sum fusion of sub-systems’ 
scores. Here, we denote this approach as FV1-PLDA. 
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Figure 4. Schematic diagram showing various steps of Fisher vector encoding based spoofing 
detection systems. This approach is comprised of two sub-systems based on two Gaussian mixture 
models (GMMs) trained on bonafide and spoof training data, respectively. Here, principal component 
analysis (PCA) projection matrix is trained on the training. 

 

Figure 5. Schematic diagram showing various steps of Fisher vector encoding based spoofing 
detection systems. In this approach, a universal background model (UBM) is trained on the entire 
(bonafide + spoof) training data. Here, PCA projection matrix is trained on the training data. 

In the second approach, as presented in Figure 5, instead of two GMMs, a single GMM (i.e., a 
universal background model (UBM)) is trained on the pooled bonafide + spoof training data. For 
modeling bonafide and spoof classes, a PLDA backend is used. This approach is denoted here as 
FV2- PLDA. 

In both approaches, extraction of Fisher vectors and spoofing detection are carried out using the 
following steps: 

1. Train GMMs on the training features (spoof and bonafide GMMs for the first approach and a 
UBM for the second approach) 

2. Extract 2560-dimensional raw Fisher vectors (i.e., without L2 + power normalization) from the 
training data and train a PCA projection matrix on the extracted training Fisher vectors. 

3. Extract 600-dimensional normalized Fisher vectors from all data using extracted local 
descriptors, trained GMMs and PCA projection matrix. 

4. Perform binary classification using PLDA classifiers (or backend). 
5. Perform score level fusion (for Figure 4 only). 
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Motivation behind Using Fisher Vector Encoding for Spoofing Detection 

In the course of the first ASV spoof challenge (held in 2015) and subsequently it became clear 
that the dynamic coefficients (e.g., delta, acceleration or delta + acceleration) as countermeasure are 
more effective for logical access spoofing detection than the static and/or combination of static + 
dynamic coefficients. That is because spoofing techniques focus on modeling a smooth version (both 
temporal and spectral) of natural speech, which means a lack of temporal dynamic and missing 
spectral details. The Fisher Vector (FV), on the other-hand, encodes the gradients of the log-likelihood 
of the features under the Gaussian Mixture Model (GMM), with respect to the GMM parameters. This 
motivated us to employ FV encodings for the detection of logical access spoofing attacks. 

5. Experiments and Results 

In this section, we describe the ASVspoof2015 corpus, experimental setups, evaluation metric, 
experimental results on the evaluation set of ASVspoof2015 corpus together with discussion. 

5.1. ASVspoof2015 Corpus 

The ASVspoof2015 corpus is comprised of ten spoofing attacks denoted by S1, S2, …, S10. These 
spoofing attacks are mainly generated using various speech synthesis and voice conversion 
techniques. S1–S5 attacks are referred to as known and S6–S10 are called unknown attacks. There are 
three subsets in the data: training, development, and evaluation. The training set contains 16,375 
recordings of which 3750 are bonafide (or genuine) and 12,625 are spoofed. In the development set 
there are 53,372 trials of which 3497 are bonafide and 49,875 spoofed trials and the evaluation set is 
comprised of 193,404 trials in total. Among them, 9404 trials are bonafide and 184,000 spoofed. We 
use the development set to tune the parameters of the systems and we report our results on the 
evaluation set. S3, S4, and S10 attacks are based on various speech synthesis algorithms and the rest 
of the attacks are generated using different voice conversion techniques. Among them, S8 spoofing 
attacks are based on Tensor based voice conversion [25] and S10 are Speech synthesis spoofing attacks 
generated using the MaryTTS toolkit [26]. For more detail about the corpus and type of spoofing 
attacks please see ref. [4]. 

5.2. Experimental Setup 

In order to evaluate the performance of the proposed approach based on Fisher vector encoding, 
we carried out spoofing detection experiments on the ASVspoof2015 corpus [4] and the results are 
reported on the evaluation set. Our baseline systems are based on a standard GMM backend using 
the CQCC low-level descriptors. As an additional baseline, we also build an i-vector/PLDA spoofing 
detection paradigm on the top of CQCC features. With Fisher vector and i-vector representations, for 
modeling bonafide and spoof classes, a probabilistic linear discriminant analysis (PLDA) backend is 
used. 

5.3. Evaluation Metrics 

The equal error rate (EER) is used as a metric for performance assessment of the spoofing 
countermeasures. Spoofing detection scores are evaluated against each spoofing attack as well as 
using a single decision threshold (common to all spoofing attacks) and results are reported for Known 
(average over known spoofing attacks S1–S5), Unknown (average over unknown spoofing attacks 
S6–S10), Average (average over all ten spoofing attacks S1–S10) and All conditions. In All condition, 
the EERs are computed by evaluating spoofing detection scores against a single decision threshold 
(common to all spoofing attacks). This is because, in the real-applications scenario it is difficult to 
have any prior knowledge about the type of spoofing attacks. 
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5.4. Implementation 

Local descriptors (i.e., CQCC features) and Fisher vector global descriptors are extracted in 
MATLAB and then converted to KALDI format. After that, GMM-based spoofing detection, 
extraction of i-vectors and binary classification using PLDA classier are conducted using the KALDI 
toolkit [24]. 

5.5. Results and Discussion 

Fisher vector-based voice spoofing detection approaches i.e., FV1-PLDA and FV2-PLDA 
systems, are tested for a range of PCA (principal component analysis) dimensions and for a range of 
Gaussian components C = {8, 16, 32, 64, 128, 256, 512} in a GMM. The best performance (i.e., lowest 
EER) on the development set is achieved with PCA dimension of 600 and 32-Gaussian components 
GMM. These optimal parameters are then used for reporting results on the evaluation set. For 
baseline GMM and i-vector/PLDA spoofing detection systems, the optimal number of Gaussian 
components is 512. But for a fair comparison with the Fisher vectors-based system we also report 
results of GMM baseline system with 32-Gaussian components. We also provide a comparison of 
performances when diagonal covariance versus full covariance GMMs are used in a stand-alone 
GMM-based spoofing detection framework. Below, we briefly summarize the spoofing detection 
systems considered in this work: 

CQCC-GMM512: GMM-based spoofing detection system with 512-Gaussian components diagonal 
covariance GMMs on the top of 40-dimensional CQCC features. 
CQCC-GMM512 (FC): Same as CQCC-GMM512 but with full covariance GMMs. 
CQCC-GMM32: Same as CQCC-GMM512 but employs 32-Gaussian components GMMs. 
CQCC-GMM32 (FC): Same as CQCC-GMM512 (FC) but uses 32-Gaussian components GMMs. 
FV1-PLDA: Fisher vector-based spoofing detection system as presented in Figure 4. 
FV1-PLDA (no norm): Same as FV1-PLDA but without using L2 and power normalization methods. 
FV2-PLDA: Fisher vector-based spoofing detection system employing a UBM as presented in Figure 5. 
CQCC (A)-GMM512 [10]: This system is taken from ref. [10] and uses 20-dimensional CQCC features 
(acceleration coefficients only) as spoofing countermeasures with a 512-Gaussian component 
diagonal covariance GMM. 
i-vector/PLDA: In this system, 400-dimensional i-vectors extracted with a 512-Gaussian component 
diagonal covariance UBM and CQCC features. 
Fused: Equal weighted score level fusion (i.e., sum fusion) of CQCC-GMM512, FV1-PLDA, 
FV2- PLDA and i-vector/PLDA systems. 

In Table 1, we present EERs attained by the GMM-based spoofing detection system with 
diagonal and full covariance GMMs. It is observed that the full covariance GMM-based system 
performs significantly better than the diagonal covariance-based system. In Table 2, we report EERs 
obtained using our proposed FV1-PLDA system when Fisher vectors are normalized using power 
normalization followed by L2-normalization and when no-normalization is applied (denoted here as 
FV1-PLDA (no norm)). It is observed from Table 2 that L2-normalization and power normalization 
helped to boost system performance significantly. 

In Table 3, we report EER results achieved by all the spoofing detection systems including our 
proposed Fisher vector-based approaches (FV1-PLDA and FV2-PLDA). We can see from this table 
that the FV1-PLDA system outperforms the baseline CQCC-GMM32 and i-vector/PLDA systems. The 
best performance is demonstrated by the GMM-based system CQCC-GMM512 (FC) built with 
512- Gaussian component full covariance GMMs. Fused system outperformed all other systems 
based on diagonal covariance GMM or UBM. 
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Table 1. Comparison of spoofing detection performance (in terms of equal error rates (EER)) of 
Gaussian mixture model (GMM)-based systems when diagonal covariance and full covariance GMMs 
are used. The best results are highlighted in bold face. 

 Known Unknown Average All 
CQCC-GMM512 0.2375 0.796 0.517 0.836 
CQCC-GMM512 (FC) 0.034 0.365 0.199 0.433 

Table 2. Comparison of spoofing detection performance (in terms of EER) of the Fisher vector-based 
systems with power normalization followed by L2 normalization (FV1-PLDA) and without any 
normalization (FV1-PLDA (no norm)). The best results are highlighted in bold face. 

 Known Unknown Average All 
FV1-PLDA 0.114 1.223 0.668 1.048 
FV1-PLDA (no norm) 0.228 5.697 2.963 3.935 

Table 3. Spoofing detection performance (in terms of EER) of all systems considered herein, including 
the Fisher vectors-based systems on the ASVspoof2015 evaluation set. Results are reported on the 
Known (average of S1–S5), Unknown (average of S6–S10), Average (average of S1–S10), and All 
conditions (using a single decision threshold) as described in Section 5.3. The lowest EERs are 
highlighted in bold face. In [10], the performance of CQCC (A)-GMM512 was not reported on the All 
evaluation condition, and therefore, we were not able to compare it in this work. 

 Known Unknown Average All 
CQCC-GMM32 0.489 1.138 0.814 1.084 
CQCC-GMM32 (FC) 0.164 0.669 0.417 0.618 
FV1-PLDA 0.114 1.223 0.668 1.048 
FV2-PLDA 0.597 3.664 2.131 2.951 
CQCC-GMM512 0.2375 0.796 0.517 0.836 
CQCC (A)-GMM512 [10] 0.048 0.462 0.255 - 
CQCC-GMM512 (FC) 0.034 0.365 0.199 0.434 
i-vector/PLDA 0.161 4.017 2.089 2.826 
Fused 0.0243 0.307 0.165 0.456 

These results are motivating, and it shows the benefit of using Fisher vector encoding and full 
covariance GMMs instead of diagonal covariance GMMs for the voice anti-spoofing task. The EERs 
obtained using all systems considered herein, are reported in Tables 4 and 5 for each of the known 
(S1–S5) and unknown (S6–S10) spoofing attacks, respectively. Note that, spoof signals of S10 attack 
were produced by concatenating the selected units from the time-domain signal without any 
vocoding technique. The major artifacts of S10 are due to the discontinuities introduced at the joint 
of two selected units [4,10–11]. Since no vocoder was used in the S10 spoofing technique synthesis 
[4], vocoder mismatch between the training and evaluation data resulted in significantly higher EERs 
for all spoofing countermeasures on the S10 attack compared to the other nine (S1–S9) attacks. 

This was also the case in the ASVspoof2015 challenge where the EERs for all participants were 
high (greater than 8%) for S10. The main reason behind such poor performance was the use of VAD 
and auditory filterbank in the feature extraction framework [11]. Removal of non-speech frames 
causes some spoofing artifacts to be removed, specifically for unknown spoofing attacks (S6–S10), 
while integration of auditory filterbank causes some of the artifacts present in the raw spectra to be 
smoothed out which resulted in an increase the error rates [10,11]. It can be seen from Figures 4 and 
5 that, all systems performed better on known attacks than on unknown attacks. By looking at the 
EERs on S10 attack in Table 5, we can see that Fisher vectors and i-vector-based systems performed 
worse on S10 attack. One interesting conclusion we can draw from this observation is that global 
descriptors (i.e., utterance level embedding) extracted from the local descriptors (e.g., CQCC) cause 
smoothing out or elimination of artifacts present in the local descriptors. 
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Table 4. Spoofing detection performance (in terms of EER) of all systems considered herein, including 
the Fisher vectors-based systems on the ASVspoof2015 evaluation set. Scores are evaluated against 
each spoofing attack (S1–S10) and results are reported on each of the known attacks. The lowest EERs 
are highlighted in bold face. 

 
Known Attacks 

S1 S2 S3 S4 S5 
CQCC-GMM32 0.124 1.203 0.043 0.0465 1.0286 
CQCC-GMM32 (FC) 0.047 0.373 0.000 0.004 0.396 
FV1-PLDA 0.069 0.253 0.019 0.017 0.208 
FV2-PLDA 0.664 1.036 0.276 0.300 0.709 
CQCC-GMM512 0.062 0.609 0.008 0.0184 0.489 
CQCC (A)-GMM512 [10] 0.005 0.106 0.000 0.000 0.130 
CQCC-GMM512 (FC) 0.010 0.064 0.011 0.011 0.074 
i-vector/PLDA 0.141 0.318 0.053 0.047 0.244 
Fused 0.015 0.069 0.000 0.000 0.037 

Table 5. Spoofing detection performance (in terms of EER) of all systems considered herein, including 
the Fisher vectors-based systems on the ASVspoof2015 evaluation set. Scores are evaluated against 
each spoofing attack (S1–S10) and results are reported on each of the unknown attacks. The lowest 
EERs are highlighted in bold face. 

 
Unknown attacks 

S6 S7 S8 S9 S10 
CQCC-GMM32 1.011 0.366 2.495 0.584 1.237 
CQCC-GMM32 (FC) 0.313 0.254 1.436 0.280 1.062 
FV1-PLDA 0.244 0.064 1.892 0.151 3.760 
FV2-PLDA 0.995 0.389 2.242 0.458 14.236 
CQCC-GMM512 0.455 0.227 2.015 0.323 0.961 
CQCC (A)-GMM512 [10] 0.098 0.064 1.033 0.053 1.065 
CQCC-GMM512 (FC) 0.089 0.046 1.165 0.0558 0.469 
i-vector/PLDA 0.331 0.285 12.345 0.329 6.795 
Fused 0.057 0.027 0.692 0.037 0.720 

6. Conclusions 

In this work, we proposed the use of Fisher vector encoding of low-level descriptors, such as 
constant Q cepstral coefficients, as countermeasure for the spoofing detection task. We also 
investigated the performance of diagonal and full covariance GMMs in a stand-along GMM-based 
spoofing detection system. In order to evaluate performance, we carried out standalone spoofing 
detection experiments and reported results on the evaluation set of the ASVspoof2015 challenge 
corpus. Our proposed system outperformed the i-vector/PLDA system and GMM systems built with 
32-Gaussian component diagonal covariance GMMs. The Fisher vector-based system is simple and 
computationally efficient as it requires a smaller number of Gaussian components in a GMM. The 
GMM-based system with a large number of Gaussian components (e.g., 512) and full covariance 
GMMs performed the best. Score level fusion of the selected four sub-systems helped to further 
reduce EER. 
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