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Abstract: Most studies on driving behaviors use video-cameras and simulators. It involves human 
observers to code the video data to be later analyzed, which can be a demanding task. We propose 
a sensing architecture to conduct studies on driving behaviors under naturalistic conditions. It 
includes smart glasses and a classifier algorithm to infer the vehicle’s cockpit’s spot drawing drivers’ 
visual attention. Thus, our architecture facilitates annotating the collected datasets with codes 
corresponding to classes of the cockpit’s spots. We have collected data with the sensing architecture 
from 15 young drivers to study how glances duration and frequency to cockpit’s spots are correlated 
with driving speed. Our results suggest that the incidence of drivers’ glances at all spots is less on 
high-speed roads than in low-speed roads. And that even though participants limited their interaction 
with the audio system, this is the spot that most eye fixation demanded to interact with. 
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1. Introduction 

Several studies have been conducted to discover how attentional factors affect driving 
behaviors. For instance, how attention deterioration of older adults may underlie crashes in various 
driving dangerous situations [1], or how multitasking affects the young and old persons’ gaze 
towards the road [2]. In studies such as the mentioned-above, video-cameras, and driving simulators 
have been mainly used to collect data. These techniques involved human observers in coding the 
video data to be later analyzed. Coding can be a demanding task that may require the involvement 
of more than one observer either to reduce the time spent on this task or to reduce errors. Based on 
our literature review, we identified the lack of sensing architectures that facilitate collecting data in 
naturalistic driving conditions. The general objective of this project is to develop a sensing 
architecture that can be used to study driving behaviors based on variables associated with the 
drivers’ visual focus of attention. To this end, our architecture determines the driver’s head pose and 
the driving context, such as driving speed. It has been shown that the head pose is a good predictor 
of driver intent and a good proxy for estimating eye gaze [3]. The proposed sensing architecture 
includes smart glasses as the primary sensing component and a classifier algorithm that infers the 
visual focus of attention (VFoA). Specifically, the inertial sensors of the smart glasses are used to 
detect the pitch and roll of drivers’ heads, which are inputted to the k-nearest neighbor (k-NN) 
classifier algorithm. It infers if the driver’s attention is on the road or in specific spots of the vehicle’s 
cockpit, such as the dashboard, radio, and central mirror. 

This paper presents preliminary results of the development of our sensing architecture that we 
have already used to conduct a study. We have already conducted a study using the architecture, 
which had the aim to examine how young adults’ glance duration and frequency to the road and 
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cockpit’s spots are correlated with driving speed. We identified that the architecture is useful to 
determine drivers’ attentional patterns, and also opportunities for improving it. 

In the next section, we present the related work that motivated us to propose the sensing 
architecture. Section 3 presents the scope of our project. Section 4 describes the components of the 
sensing architecture. Section 5 explains the procedure followed for conducting the sensing study. 
Section 6 describes the study results. Finally, Section 7 presents conclusions and future work. 

2. Related Work 

2.1. Studies on Driving Behavior 

Several studies have been conducted to study how several attentional factors affect driving 
performance and behaviors. Most of the studies analyzed the head and eye dynamics of the driver 
through the use of cameras. Thus, it was identified that searching head movements and speeding 
behavior at intersections affect more the driving performance of elderly drivers than younger ones 
[4]. Wikman and Summala found that the elderly spend a longer total time looking at the in-car 
display and that they travel a longer distance with eyes away from the road than young drivers [5]. 

Other studies have used eye trackers to video-record the place where the user is focusing their 
attention. For example, Kim et al. analyzed the visual scanning time on intersections spent by young 
and older adults. The younger group was more confident when driving since they passed the 
intersections faster than the older group [6]. Fancello et al. analyzed the visual perception of young 
drivers and elderly drivers while they went through a roundabout. The older group concentrated 
only on traffic arriving from the right arm of the roundabout and the vehicle in front [7]. It has also 
been identified that elderly drivers are less successful in recognizing on-road visual signs than 
middle-age drivers [8]. Finally, eye fixations have been studied to determine how they are correlated 
with collisions [9,10]. It has been found that older adults tend to have longer visual fixation duration 
and more visual fixation counts than younger drivers, but with no difference in the number of 
collisions [9]. Moreover, a better executive function is related to more frequent eye fixations on the 
road and inside vehicle features [10]. 

Thus, in driving behavior studies, the use of camera-based technology to collect events inside 
and outside the vehicle is a prevalent practice. A disadvantage of this method lies in the analysis of 
the data because a video recording must be manually coded to extract the desired behavior 
information. To optimize the time spent to code the data, a trained analyst observes short segments 
of video sequences (e.g., less than 10 s long) in randomly sampled and controlled periods (e.g., every 
10 miles) to identify possible collisions or risky events [11]. Even though the events and drivers’ 
behavior codes are clearly defined in advance, an analyst is prone to make mistakes. Therefore, 
studies may involve several analysts to agree on how to label the observed events, which could entail 
a high time cost to prepare the data for their later analysis. 

On the other hand, research has been carried out to address the technical challenges to track the 
dynamics of the head and infer behaviors related to the lack of attention. These related research 
papers are summarized in the next section. 

2.2. Sensing Techniques to Infer Driving Behaviors 

Head posture is the signal most studied through camera-based techniques since it requires 
developing complex and robust computer vision algorithms to detect face and eye features under 
various lighting conditions [12,13]. 

On the other hand, wearable computing has become mainstream, as evidenced by the large-scale 
market uptake of smartwatches and smart glasses [14]. These devices embed motion sensors that can 
make the detection of driving behaviors more feasible and affordable in real-world settings. 
However, we have identified only two works that made use of the inertial sensors of smart glasses 
[15,16], both of the same research group. In [16], the authors focus on detecting driver’s pure head 
motion through a dual compass-based system that estimates the angular velocity from a head-
mounted compass (magnetometer) and then subtracts the angular velocity from a vehicle-end 
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compass. Moreover, in [16], they used raw data from accelerometer, gyroscope and magnetometer 
sensors of smart glasses to estimate seven specific head postures based on rotation angles of yaw, 
pitch, and roll (e.g., ‘yaw right’, ‘yaw left’, ‘pitch right’, and ‘pitch left’). In this direction, inertial 
sensors and GPS have been used to develop a system in Japan that automatically evaluates safe-
driving skills during a training program [17]. The system consists of inertial sensors that have to be 
worn on drivers’ head and a shoe to measure their motions, and then, a support vector machine 
(SVM) classifier decides if the visual scanning was appropriate for safe driving [17]. 

Thus, in the approach mentioned above, additional processing is required to infer the drivers’ 
visual focus of attention (VFoA). On the contrary, our approach is to generate a sensing component 
that infers the cabin spot drawing the driver’s VFoA based on their head posture. 

3. Scope of This Work 

Inferring VFoA can be useful for studying and monitoring drivers’ performance. For instance, 
VFoA on some cabin spots are highly related to conducting secondary tasks while driving, and 
therefore, cause distractions [18]. The increasing use of in-vehicle information systems (IVISs) and 
the prevalence of mobile devices may affect driving performance in different ways by inducing visual 
and cognitive distractions [18]. Not only secondary tasks are risky, but also those tasks highly related 
to driving, which demand glances away from the roadway [19]. The types of driver inattention are 
four categories [19]: 

1. secondary task distraction, which refers to the diverting of the driver’s attention away from the 
driving task, for instance, handling CDs and reaching for an object on the seat; 

2. driving-related inattention, it is directly related to the driving task such as checking the 
speedometer and mirrors; 

3. drowsiness, which includes eye closures and repeated yawing; 
4. non-specific eye-glance away from the forward roadway, it involves glances at no discernible 

object, person, or unknown location. 

Our work copes with the two first categories in which drivers conduct activities that may involve 
changing their head pose to glance at specific spots of the car’s cabin. The literature review presented 
previously revealed that the driving context influences how drivers manage their VFoA, such as 
driving in intersections and roundabouts. However, it has not been studied the visual interaction 
patterns with the vehicle’s cockpit. Therefore, we identified the following research: 

• RQ1: How variables associated with the driving context, such as speed and hierarchy of road, 
influence focusing visual attention on specific spots of the vehicle’s cockpit? 

• RQ2: What are the technical design characteristics for developing a sensing architecture useful 
to characterize the drivers’ VFoA on spots of the vehicle’s cockpit? 

4. Sensing Architecture 

As illustrated in Figure 1, the design of the sensing architecture consists of three components 
that collect data related to the driving context and the VFoA. 

 
Figure 1. Sensing architecture. 
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4.1. Vehicle Context Sensing Component 

This component was implemented for the Android platform to use a mobile device to record 
data related to the driving context. It records drivers’ head orientation through the device’s camera 
sensor, and the driving speed and geographical position of the vehicle through the GPS sensor. Video 
is recorded continuously over the trip, and every frame includes the Unix timestamp in milliseconds. 
Driving speed and location are sampled with a rate of 1 Hz, including the Unix timestamp in milliseconds. 
The timestamp is used to link the data with those collected through the head-mounted component. 

4.2. Head-Orientation Sensing Component 

This component was implemented on the Google Glass platform. It uses the rotation vector 
sensor to report the orientation of the device relative to the East-North-Up coordinates frame. The 
Google Glass orientation is obtained by the integration of accelerometer, gyroscope, and 
magnetometer readings. These readings are processed by the platform’s sensor manager, which 
returns the values for the azimuth, pitch, and roll rotation angles in radians. Pitch is the rotation angle 
(RA) about the x-axis and represents the angle between a plane parallel to the device and a plane 
parallel to the ground. Roll is the RA about the y-axis. It represents the angle between a plane 
perpendicular to the device and a plane perpendicular to the ground. Moreover, azimuth or yaw is 
the RA about the z-axis. Since the azimuth represents the angle between the device’s z-axis and the 
magnetic pole, it changes even if drivers are not moving their heads while their vehicles are moving, 
and thus it was discarded from the sample recordings. Currently, this component has two modes for 
collecting data with the sampling rate set at 50 Hz: 

• Static sensing. In this mode, the component provides an application for the Google Glass to 
collect the head RA data and to label them with the corresponding cabin spot class drawing the 
drivers’ VFoA. The spot classes used for the aim of our study are presented in Figure 2b. The 
component should be used with the vehicle parked for safety reasons. As depicted in Figure 2a, 
the application requires to select the cabin spot to record through a sliding gesture, and a tap 
gesture to control (start/stop) the data recording. Thus, four-tuple vectors are registered to 
contain the RA of the head in x and y, the timestamp, and the label associated with the cabin 
spot drawing drivers’ VFoA. Thus, this component’s functioning mode is used to collect the 
training dataset that the k-NN algorithm uses to classify the data collected during driving sessions. 

• Dynamic sensing. It is used to collect the head’s x and y RA during driving sessions and the 
corresponding Unix timestamp in milliseconds for every reading. The dataset gathered under 
this modality should be inputted into the k-NN algorithm to be classified as cabin spots classes. 

  
(a) (b) 

Figure 2. Drivers’ visual focus of attention (VFoA) is captured with the application presented in (a), 
which enables to label the head rotation angle (RA); (b) Classes used to label the data. 
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4.3. Inferring the VFoA Spot 

As mentioned earlier, to classify the inclination angle of the head as a cockpit spot attracting the 
drivers’ VFoA, we use the k-NN algorithm which is simple to implement. It is considered a direct 
classification method because unlike other supervised learning algorithms, such as SVM, it does not 
produce a mapping function from a training stage, but it only uses a training dataset at the test time 
to make predictions [20]. Therefore, k-NN requires the storage of a dataset labeled in advance with 
the classes to infer, which is called the training dataset. For classifying a new observation, k-NN uses 
the principle of similarity (distance measurement) between the training dataset and the observation 
to classify. Then, it is assigned to the most common class through a majority vote of its k nearest 
neighbors. We used the Euclidean distance as a metric of similarity and k = 3 neighbors. 

5. Sensing Study Design 

The inclusion criteria to participate in the study were: To have a valid driving license and a 
vehicle. The experiment included three stages. The first one was a session to collect data with the car 
parked. Participants wore Google Glass with the head-orientation sensing component functioning in 
the static sensing mode. Thus, we collected training datasets for the k-NN algorithm. 

The second stage consisted of a session that included driving for two types of streets defined in 
the hierarchy of roads [21]. We included arterials and local roads. Arterials are high speed-roads of 
our city, which may carry large volumes of traffic. In our municipality, these are called boulevards 
in which the maximum speed allowed is 60 km/h. Local roads have the lowest speed limit (40 
km/hour). All participants drove through the same path, which included 3.1 km of trails in the 
selected residential area and 3.9 km of a boulevard. 

The third stage consisted of preparing and analyzing the collected datasets. They were indexed 
using the timestamp, and a repository of .csv archives was created. As illustrated in Figure 1, this 
repository contains the driving behaviors datasets. We used the k-NN algorithm to classify the 
drivers’ head rotation angles (RA) on cockpits’ spots classes. Then, we used descriptive statistics tools 
[20] to analyze the driving behavior datasets. We conducted tests of correlation by estimating the 
Pearson correlation coefficient and setting the confidence level p to 0.05. The variables analyzed 
included the driving speed and hierarchy of road, and variables related to the VFoA behaviors: 

• Glance frequency: We counted the times that drivers look at (eyes off-on-off) each spot. 
• Glance duration: We estimated the time that each drivers’ glance lasts to a spot. 

Correlations results were interpreted according to the following criteria: 0 < |r| < 0.3 is a weak 
correlation, 0.3 < |r| < 0.7 represents a moderate correlation, and |r| > 0.7 is a strong correlation. 

6. Results 

6.1. Participants Data 

Fifteen students from our university were recruited to participate in this study, 12 men and 3 
women. Their ages ranged between 20 and 29 years old. Some of their demographic characteristics 
and driving performance are shown in Table 1. It shows that the average driving speed was lower on 
the local roads (M = 16.12, SD = 3.46) than on the arterial roads (M = 30.25; SD = 5.15). The individual 
training datasets obtained using the static mode of the sensing architecture yielded the classification 
performance summarized in Table 1. These training datasets were used for classifying the datasets 
collected through the head-orientation sensing component during the driving sessions. 
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Table 1. Participant characteristics. 

Demographic Data k-NN Performance on 
Static Mode 

Driving Data Collected on Dynamic Mode 

Participant Gender Age Error Rate 
(%) 

Accuracy 
(%) 

Speed 1 M (SD) Speed 1 (M) on 
Local/Arterial Roads  

P1 Male 21 0.11 99.89 17.45 (18.17) 14.19/21.51 
P2 Male 21 0.20 99.80 20.30 (18.33) 15.88/25.33 
P3 Male 20 0.25 99.75 17.11 (16.70) 12.50/33.59 
P4 Male 22 0.29 99.71 17.74 (18.61) 12.88/32.70 
P5 Male 21 0.46 99.54 22.03 (20.18) 15.57/32.60 
P6 Male 25 0.12 99.88 19.36 (19.90) 15.26/29.57 
P7 Male 29 0.36 99.64 20.62 (19.28) 16.01/33.14 
P8 Male 22 0.04 99.96 19.90 (18.67) 17.42/22.34 
P9 Male 22 0.20 99.80 26.18 (23.21) 21.59/31.08 

P10 Female 21 0.30 99.70 16.78 (17.47) 12.38/30.28 
P11 Male 23 0.20 99.80 24.25 (21.34) 18.15/34.30 
P12 Female 21 0.00 100 20.79 (18.73) 15.57/37.03 
P13 Female 22 0.14 99.86 30.42 (22.32) 24.87/36.70 
P14 Male 25 0.02 99.98 16.38 (17.86) 12.72/21.89 
P15 Male 21 0.15 99.85 21.18 (18.06) 16.84/31.74 

1 Speed in km/hour. 

6.2. Frequency of Glances and Hierarchy of Road 

Table 2 presents the frequency of glances to the cockpit’s spots, inferred through the k-NN 
algorithm for all the participants. The road (S0) was most frequently glanced at (901 times), followed 
by the rearview (S1), left and right mirrors (S2–S3). S6 (passenger) had more glances than the other 
non-critical spots to drive, i.e., dashboard (S4) and audio/climate (S5). Video recordings show that 
subjects tended to interact visually with the copilot while talking to him. In general, the glance 
frequency at all spots was reduced when driving on the arterial road (boulevard) in contrast to the 
local roads (residential zone). We deduce that participants tend to limit their interaction with non-
critical to-drive spots when driving on the boulevard since they demand more visual attention on the 
road (S0). It was especially evident with the audio system (S5), which was almost ignored by all the 
participants as they drove down the boulevard. 

Table 2. Frequency of glances to each cockpit’s spot. 

  
Road 
(S0) 

Rearview 
Mirror (S1) 

Left-Mirror 
(S2) 

Right-
Mirror (S3) 

Dash-
Board (S4) 

Audio/ 
Climate (S5) 

Passenger 
(S6) 

Local 
(residential 

zone) 

Sum 901 748 222 347 111 44 618 
Mean 60.07 49.87 14.80 23.13 7.40 2.93 41.20 
Std. Dev 41.24 34.63 14.00 23.65 10.02 6.47 31.04 

Arterial 
(Boulevard) 

Sum 310 269 68 131 27 4 255 
Mean 22.14 19.21 4.86 9.36 1.93 0.29 18.21 
Std. Dev 32.08 31.39 8.47 10.92 3.26 1.25 19.63 

Total 
Sum 1322 1141 311 485 142 52 922 
Mean 88.13 76.07 20.73 32.33 9.47 3.47 61.47 
Std. Dev 70.05 65.17 20.45 32.62 13.16 6.81 49.75 

6.3. Glances Frequency and Driving Speed 

We estimated the correlation between glance frequency and driving speed for each spot. Most 
of the estimations represent weak negative correlations, except for S6 which got a moderate negative 
correlation between the two variables (r = −0.5104, N = 618, p = 0.00001). These results are significant 
at p < 0.05. This means that as the driving speed increases, participants tend to visually interact less 
with the cockpit’s spots, especially with the copilot. 
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6.4. Glances Duration and Driving Speed 

Similarly, most of the correlations between glance duration and speed resulted negatively weak, 
except for glance duration at S5 (the audio system) in which a weak positive correlation between the 
two variables was found (r = 0.4002, N = 52, p = 0.003286). Our results are significant at p < 0.05. Thus, 
even though participants limited their interaction with S5, this is the spot that demanded most eye 
fixation when interacting with it. This may be due to this age group is more confident to interact with 
non-critical to drive spots. However, we do not have evidence from other age groups to make a strong 
asseveration. For the rest of the cockpit’s spots, we conclude that participants tended to shorten their 
glances duration as the driving speed incremented. 

7. Conclusions and Future Work 

In this work, we have presented a sensing platform and illustrated how it facilitates collecting 
driving behavior datasets in naturalistic conditions. Our results suggest that glance frequency at all 
cockpit’s spots is more reduced when driving on high-speed roads than in low-speed roads. Even 
though participants limited their interaction with the audio system, this is the spot that demanded 
most eye fixation. We found that as the driving speed increases, participants tend to visually interact 
less with the cockpit’s spots, especially with the copilot. Thus, we have presented preliminary 
evidence about how variables associated with the driving context, such as speed and hierarchy of 
road, influence focusing visual attention on specific spots of the vehicle’s cockpit. Therefore, we 
provided results in direction to address RQ1. However, we consider that the inclusion of more 
subjects in the study will enable us to obtain more asserted correlations. We plan to extend this study 
to contrast visual behavior patterns of young adults with those of older adults. Given that the 
processing speed of older adults is slower than the group of young drivers, we hypothesize that the 
older drivers glance longer at cockpit spots than young drivers. Additionally, older adults look at the 
points that are not critical for driving, such as the radio or the passenger area, less frequently. 

Extending our study will enable us to test the mentioned hypothesis and also generate a more 
robust sensing architecture to address RQ2. In this work, we have described the technical 
characteristics of our proposed sensing architecture and demonstrated its utility to characterize the 
drivers VFoA. Future work could include modifying the head-orientation sensing component to 
detect in real-time the drivers’ VFoA in order to validate its accuracy on dynamic sensing mode. 
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