
  

Proceedings 2019, 27, 34; doi:10.3390/proceedings2019027034 www.mdpi.com/journal/proceedings 

Proceedings 

Edge-Group Sparse Principal Component 
Thermography for Defect Detection in an Ancient 
Marquetry Sample † 
Ching-Mei Wen 1, Stefano Sfarra 2, Gianfranco Gargiulo 3 and Yuan Yao 1,* 

1 Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; 
s107032507@m107.nthu.edu.tw 

2 Department of Industrial and Information Engineering and Economics (DIIIE), University of L’Aquila,  
I-67100 L’Aquila (AQ), Italy; stefano.sfarra@univaq.it 

3 Individual Company of Restoration (Gianfranco Gargiulo), Via Tiberio 7b, I-80073 Capri (NA), Italy; 
gianfrancogargiulo79@gmail.com 

* Correspondence: yyao@mx.nthu.edu.tw 
† Presented at the 15th International Workshop on Advanced Infrared Technology and Applications  

(AITA 2019), Florence, Italy, 17–19 September 2019. 

Published: 27 September 2019 

Abstract: Nondestructive inspection (NDI) has immensely contributed to the restoration of historic 
and artistic works. As one of the most common used NDI methods, active thermography is an  
easy-to-operate and efficient technique. Principal component thermography (PCT) has been widely 
used to deal with thermographic data for enhancing the visibility of subsurface defects. Unlike PCT, 
edge-group sparse PCT introduced herein enforces sparsity of principal component (PC) loadings 
by considering the spatial connectivity of thermographic image pixels. The feasibility and 
effectiveness of this method is illustrated by the experimental results of the defect characterization 
in an ancient marquetry sample with a fir wood support. 
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1. Introduction  

In the restoration of historic and artistic works, nondestructive inspection (NDI) can help us with 
a good understanding of the state of antiques or finding the invisible details. As one of the commonly 
used NDI methods, active thermography is an imaging procedure [1], which is based on the analysis 
of heat flow induced by an energetic excitation of a test object. The resulting heat flow is influenced 
by interior material layers and defects. As a result, the inhomogeneity caused by defects can be 
captured on the object surface by infrared cameras.  

Active thermography has the characteristics of detection in large areas, recording in real time, 
and being easy to operate. Despite these advantages, objects can become indistinguishable in the 
thermal images because of the existence of inhomogeneous backgrounds. To solve this problem, 
plenty of thermographic data analysis methods have been developed. Among them, principal 
component thermography (PCT) [2] is widely recommended. 

PCT can capture the linear relationship between pixels and extracts the latent patterns of 
thermographic data with loading images. However, the non-sparsity of PCT loadings (called empirical 
orthogonal functions in the original paper [2]) often leads to results that are difficult to interpret. 
Motivated by the fact that defects always behave as spatially connected pixel groups in the thermal 
images, an edge-group sparse PCT (ESPCT) method is utilized for thermographic data analysis to 
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reveal the defects in an ancient marquetry sample. Inspired by the research in bioinformatics [3], 
ESPCT considers the spatial connectivity among pixels and imposes sparsity on the loadings. By 
doing this, the defects can be revealed more clearly. 

2. Methodology 

As shown in Figure 1, the thermographic data set recorded in an experiment can be viewed as a 
three-dimensional matrix with a size of 𝑥 𝑦 𝑛 , where x   y represents the number of pixels 
contained in each thermal image and n denotes the number of frames collected during the process of 
heating and cooling. Before conducting ESPCT, each frame is unfolded to a column vector. Without 
loss of generality, it is assumed that the unfolded thermographic data matrix has been centered. 

 
Figure 1. Structure of thermographic data. 

The optimization problem of extracting the first principal component (PC) is formulated as:  maximize‖ ‖ ,‖ ‖  𝑝 𝑋𝑣  𝑠. 𝑡.  ‖𝑝‖  𝑘, (1)‖𝑝‖ min∀𝒢 ⊆𝒢, ⊆ 𝒢 |𝒢′| , (2)

where 𝑝 is the first loading vector of dimension 𝑚  1, v  𝑋 𝑝 is the first PC of dimension 𝑛  1, 
and ‖∙‖  denotes the 𝐿  norm. 𝒢 represents a group structure, which is an edge set denoting the 
connectivity among pixels. For thermographic data analysis, each pixel connects only to its eight 
nearest neighbors. In Fig. 1, the nearest neighbors of the pixel in blue are illustrated as the orange 
points. 𝒢′ is a subset of 𝒢. 𝑉 𝒢′  is a vertex (pixel) set induced from the edge set 𝒢′. |𝒢′| denotes the 
number of elements of 𝒢′. Support(𝑝) denotes the set of indices of the nonzero elements in 𝑝. ‖𝑝‖  
is an edge-group sparse penalty (ES-penalty) leading to a sparse loading vector whose nonzero 
elements are determined based on some important edges in 𝒢, where the importance of each edge is 
quantified with the weight (𝑤 , ) on it. Here, i and j are the indices of pixels, 𝑖, 𝑗 ∈ 1, 𝑚 .  𝑤 , 𝑧 𝑧  (3)

where 𝑧  is the i-th element in the vector 𝑧 𝑋𝑣. 𝑘 is an adjusting parameter that controls the number 
of selected edges, which in turn controls the sparsity of the loading vector. The above-mentioned 
optimization problem can be solved by applying a greedy strategy until convergence. After obtaining 
the first PC and loading pair, the following components can be calculated sequentially. More details 
of the learning algorithms can be found in the literature [3]. 

To visualize the defects, each loading vector can be reshaped to a two-dimensional matrix of size 𝑥 𝑦. Accordingly, loading images are produced for visual analysis. 
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3. Ancient Marquetry Sample 

This ancient sample (Figure 2) is composed of three parts. The deepest layer is the support made 
of fir wood, in the middle part there is the animal glue, while the upper layer is the decorative layer 
made with multiple materials such as pearl (white tesserae), a horn of bovine horn (some brown/black 
tesserae), boxwood, among others. In the left subplot of Figure 2, seven defects are labeled. 

 
Figure 2. (top) ancient marquetry sample, (middle) back of the sample, and (bottom) raw 
thermal images collected at the 0.03, 0.67, 1.67, and 2.33 s during the heating and cooling process. 

4. Experimental Results 

The authors applied ESPCT to the thermographic data of the ancient marquetry and compared 
the result with PCT. The experimental setup is shown in Figure 3. The sample was heated by two 
flashes (FORCE) which delivered a thermal pulse of energy 2560 J within 3 ms. The thermal images 
were photographed with an infrared camera (TAS-G100EXD, NEC) whose resolution is  
320  240 pixels and sampling rate is 30 frames per second.  

 

Figure 3. Experimental setup. 

The region of interest is 226  241 pixels. As shown in Figure 2, identifying the defects from the 
raw thermal images is difficult because of the effect of inhomogeneous background. After unfolding, 
the size of the thermographic data matrix 𝑋 is 54,466  70. The analysis results, that is, the loading 
images, of both PCT and ESPCT are shown in Figure 4. In the ESPCT analysis, k was selected to be 
2800, which was specified according to the estimated size of the defective regions. PCT discovers  
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the missing tesserae on the left (A, B, C, D, and E), whereas the other defects (F and G),  
i.e., the detachments, are not clearly detected because of their depths. The loading image 
corresponding to PC2 extracts most of the defect features, whereas other loadings also contain some 
relevant information. Such information dispersion is not desired. Meanwhile, the background 
patterns retained in the loading images are also unfavorable for defect identification. ESPCT provides 
much clearer results, in that all defects of missing white tesserae and the detachment F are well 
detected by the loading corresponding to PC1, while the detachment G is discovered by PC3. Other 
loading images, such as PC2 and PC4, contain only noises. Moreover, according to the signal-to-noise 
ratio (SNR) [4] presented in Table 1, ESPCT demonstrates much a better SNR for every defect. 

 

 
Figure 4. PCT (upper) and ESPCT (lower) loading images corresponding to PC1-PC4.  

Table 1. SNR values of PCT and ESPCT. 

Method A B C D E F G* 
PCT 5.52 4.46 3.18 4.19 5.06 2.05 4.32 

ESPCT 18.68 13.75 3.20 10.14 16.12 6.11 12.97 

5. Conclusions 

In this study, a novel thermographic data analysis method, named ESPCT, is adopted for defect 
detection in an ancient marquetry sample. Not only the missing tesserae but also the invisible 
detachments are successfully identified. Compared with PCT, ESPCT shows better performance in 
terms of feature extraction by incorporating spatial connection information and sparsity. 
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