proceedings

Abstract

Validating Physiological and Biomechanical Parameters During Intermittent Swimming at Speed Corresponding to Lactate Concentration of $4 \mathrm{mmol} / \mathrm{L}^{\dagger}$

Gavriil G. Arsoniadis ${ }^{1, *}$, Ioannis S. Nikitakis ${ }^{1}$, Petros G. Botonis ${ }^{1}$, Ioannis Malliaros ${ }^{1}$ and Argyris G. Toubekis ${ }^{1,2}$
1 Division of Aquatic Sports, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Dafne, 17237 Athens, Greece; inikitak@phed.uoa.gr (I.S.N.); pboton@phed.uoa.gr (P.G.B.); gmalliaros@phed.uoa.gr (I.M.); atoubekis@phed.uoa.gr (A.G.T.)
2 Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Dafne, 17237 Athens, Greece
* Correspondence: garsoniadis@phed.uoa.gr
\dagger Presented at the 9th Greek Conference of Biochemistry and Physiology of Exercise, Thessaloniki, Greece, 18-20 October 2019.

Published: 30 August 2019

Abstract

AIM: progressively increasing swimming speed test $(5 \times 200 \mathrm{~m})$ is used to calculate the speed corresponding to blood lactate concentration of $4 \mathrm{mmol} / \mathrm{L}(\mathrm{V} 4)$ and related physiological and biomechanical parameters. The purpose of this study was to compare the calculated by a $5 \times 200-\mathrm{m}$ test parameters with those obtained during an intermittent swimming training set ($5 \times 400-\mathrm{m}$) performed at constant speed corresponding to V4. MATERIAL \& METHOD: Twelve competitive male swimmers (age, 19 ± 2 years; height, $178 \pm 8 \mathrm{~cm}$; body mass, $74.4 \pm 10.1 \mathrm{~kg}$) performed a $5 \times$ 200-m front crawl test reaching maximum speed in the last effort. Blood lactate concentration (BL) was measured after each 200 m , and heart rate (HR), stroke rate (SR), and stroke length (SL) were determined during each 200 m . V4 was calculated by interpolation using the individual speed vs. BL, and subsequently HR, SR, SL corresponding to V4 were calculated (HR-V4, SR-V4, SL-V4). One week later, swimmers performed $5 \times 400-\mathrm{m}$ at constant speed corresponding to V4. During the $5 \times$ 400-m test, BL (BL-5 $\times 400$) was measured after the 1st, 3rd and 5th repetitions, while HR (HR-5 \times 400) was recorded continuously. SR and SL were measured in each 400-m repetition, and mean values were calculated (SR-5 $\times 400$ and SL- 5×400). RESULTS: V4 and HR-V4 were not different from speed and HR-5 $\times 400$ during the $5 \times 400-\mathrm{m}$ test ($1.30 \pm 0.10 \mathrm{vs} .1 .29 \pm 0.10 \mathrm{~m} / \mathrm{s} ; 160 \pm 14 \mathrm{vs} .166$ $\pm 13 \mathrm{~b} / \mathrm{min}$, both $p>0.05)$. BL- 5×400 was not different from $4 \mathrm{mmol} / \mathrm{L}(4.9 \pm 2.6 \mathrm{mmol} / \mathrm{L}, p>0.05)$. SR was increased and SL was decreased during $5 \times 400 \mathrm{~m}$ compared to the values corresponding to V4 (SR-V4, 28.9 ± 3.8 vs. SR-5 $\times 400,34.5 \pm 3.4$ strokes/min; SL-V4, 2.38 ± 0.33 vs. SL- $5 \times 400,2.25 \pm$ $0.30 \mathrm{~m} /$ cycle, both $p<0.05$). A Bland-and-Altman plot indicated agreement between variables obtained by the $5 \times 200-\mathrm{m}$ and $5 \times 400-\mathrm{m}$ tests but with great range of variation (bias: BL, -1.0 ± 2.6 $\mathrm{mmol} / \mathrm{L} ; \mathrm{HR},-7 \pm 12 \mathrm{~b} / \mathrm{min} ; \mathrm{SR},-5.6 \pm 3.3$ strokes $/ \mathrm{min}$; SL, $0.13 \pm 0.09 \mathrm{~m} /$ cycle). CONCLUSIONS: An intermittent, with progressively increasing speed, swimming test provides physiological information to coaches to apply during an intermittent constant-speed swimming training set at intensity corresponding to BL of $4 \mathrm{mmol} / \mathrm{L}$ with large inter-individual variability. It seems that the $5 \times 200-\mathrm{m}$ test does not provide valid results for the biomechanical parameters.

Keywords: blood lactate; heart rate; swimming

