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Abstract: An innovative mechanical testing method (Compressive Circular Ring Method) is provided 
for measuring Young’s modulus of each layer in a flexible multi-layered material. The method is 
based on a nonlinear large deformation theory. By just measuring the vertical displacement or the 
horizontal displacement of the ring, Young’s modulus of each layer can be easily obtained for 
various thin multi-layered materials. Measurements were carried out on an electrodeposited two-
layered wire. The results confirm that the new method is suitable for flexible multi-layered thin 
wires. In the meantime, the new method can be applied widely to measure Young’s modulus of thin 
layers formed by PVD, CVD, Coating, Paint, Cladding, Lamination, and others. 
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1. Introduction 

Young’s modulus of multi-layered materials is very important to predict large deformation in 
both analytical and technological interests. A new testing method (Circular Ring Method) is based on 
a nonlinear theory. This paper deals with the compressive technique. Exact analytical solutions are 
obtained in terms of elliptic integrals. In order to assess the applicability of the proposed method, 
several experiments were carried out using a two-layered material (Cu: an electrodeposited material 
+ SWPA: a spring steel material). As a result, the new method was found to be suitable for flexible 
multi-layered materials. Besides the Circular Ring Method studied here, the Axial Compression Method 
[1], the Own-weight Cantilever Method [2,3] for a flexible multi-layered material have already been 
developed and reported, based on the nonlinear large deformation theory. 

2. Fundamental Theory 

A typical load-deformation shape is given in Figure 1 for a circular ring (the initial radius: R0, 
the whole length of the circular ring: 4L = 2πR0) subjected to opposite compressive forces at two points. 
As an example, Figure 2 shows the cross-section of a two-layered material. 

The analysis is carried out for only the 1/4 part (Region AB, arc length L). The horizontal 
displacement is denoted by x, the vertical displacement by y, and θ is the deflection angle. 
Furthermore, the arc length is denoted by s, the radius of curvature by R and the bending moment 
by M. The relationship among R, M, s, x, y and θ are given by: 
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where Ei Ii = the flexural rigidity of each layer. 
The bending moment applied at an arbitrary position Q(x, y) is expressed as 

AMxPM +−= ・  (2) 

Introducing the following non-dimensional variables, 
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Considering the boundary condition, ( ) 00
1

A
ραζθ θθ −−=

==
dd  at the point A, the basic 

equation is derived from Equations (1)–(3) in the form of: 

( )2
01sin2 ραθγζθ +±= ＋dd  (4) 

This nonlinear differential Equation (4) is the basic equation that determines large deformation 
behaviors of a compressive ring. 
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Figure 1. The co-ordinate system for a flexible multi-layered circular ring subjected to opposite 
compressive forces. (A) In the case with no inflection point; (B) In the case with inflection point a. 
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Figure 2. Illustration of cross-section of two-layered material (as an example). 

2.1. In the Case with No Inflection Point [See Figure 1A] 

2.1.1. Coverage 10 ≤≤ k  of the Variable k in Equation (5) 

Considering the boundary conditions ( ) 1maxmax == Lsζ , Lδη =max  and Lλξ =max , the 
maximum non-dimensional arc length ζAB, the maximum non-dimensional vertical displacement ηAB 
and the maximum non-dimensional horizontal displacement ξAB are obtained as follows. 

( ) γφζ AAB  , 1 kF==  (6) 

( ) ( ){ } γφφδη AAAB  ,  , 2 kFkEL −==  (7) 

( )  cos1 2 AAB γφλξ −⋅== kL  (8) 

Similarly, the non-dimensional load γ is 

( ){ }2
A

2  , )( φγ kFEIPL ==  (9) 

where ( ){ }[ ]21
A 21Sin k−=φ . 

2.1.2. Coverage 1≥k  of the Variable k in Equation (5) 

By transforming the variables Zk sinsin =φ  the maximum non-dimensional arc length ζAB, the 
maximum non-dimensional vertical displacement ηAB and the maximum non-dimensional horizontal 
displacement ξAB are obtained as follows. 

( ) )(4 , 11AB γπζ kkF==  (10) 

( ) ( ) ( ){ } γππδη 4 , 1124 , 12A kFkkkEkLB ⋅−−⋅==  (11) 

( )  cos1 2 AAB γφλξ −⋅== kL  (12) 

where ( ){ }[ ]21
A 21Sin k−=φ . 

Similarly, the non-dimensional load γ is 

( ){ }22 4 , 1)( kkFEIPL πγ ==  (13) 
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2.2. In the Case with Inflection Point [See Figure 1B] 

In this case, a measuring theory can be derived under the coverage of the variable k, 10 ≤≤ k . 
Details of the analytical theory will be omitted here. 

Equations (6)–(13) are fundamental formulas to obtain Young’s modulus of each layer, based on 
the nonlinear large deformation theory. The functions F(k,ϕ), E(k,ϕ) appeared in Equations (6)–(13) 
are Legendre-Jacobi’s elliptic integrals of the first and second kinds, respectively. 

The following formula based on Equation (3) is useful in calculating each Young’s modulus Ei. 

( )
=

=
n

i
ii PLIE

1

2 γ  (14) 

where Ii is the second moment of area. 
When calculating Young’s modulus Ei using Equation (14), it is not necessary to determine the 

neutral axis for multi-layered rods/wires because the cross section is symmetrical at any time with 
respect to the neutral axis. The second moment of area Ii of each cross section for multi-layered 
rods/wires (diameter di) with respect to the neutral axis is shown as 
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4

1
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On the other hand, in case of multi-layered plates it is necessary to determine the neutral axis of 
materials. The second moment of area Ii of each cross section (thickness hi, width b: common to all) 
with respect to the neutral axis is shown as 
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The distance y  to the neutral axis (see Figure 2a) is obtained as follows. 
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The first moment of area (Si)z of each cross section (Ai: the cross-sectional area) with respect to z 
axis is expressed as 
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One quantity γ (: the non-dimensional load) is required to calculate Young’s modulus Ei from 
Equation (14). The value of γ is obtained from a chart (: Nomograph) of γ-δ relation (δ the vertical 
displacement) [Method 1] or γ-λ relation (λ: the horizontal displacement) [Method 2]. 

3. Techniques of New Measuring Method (Compressive Circular Ring Method) 

In this paper, two methods are introduced in order to measure Young’s modulus. The γ-δ and 
γ-λ relations are presented in Figures 3 and 4, respectively. These charts are computed previously by 
using Equations (9)–(13). Here, the usage of the chart is recommend by the author. As a point to note, 
for example, a two-step procedure should be done in a measuring experiment, when Young’s 
modulus of each layer in a two-layered material is all unknown (Note that a multi-layered material 
with number of layers n requires a n-step procedure). In other words, it is possible to reduce a 
frequency of step in proportion to the number, if the number of layers with known Young’s modulus 
is proven. 
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Figure 3. Non-dimensional chart for the parameter γ when the vertical displacement δ is given. 

 

Figure 4. Non-dimensional chart for the parameter γ when the horizontal displacement λ is given. 

3.1. Method 1: (Measurement of δ Only) 

The usage of this method is shown below in a two-layered material. Each Young’s modulus Ei 
is obtained for a SWPA thin wire (: first layer) with 1/4 part length: L1 = 125.0 [mm](4L1(500 [mm]): 
whole length of the ring), diameter: d1 = 0.38 [mm] and a Cu electrodeposited layer (: second layer) 
with length: L2 (= L1) = 125.0 [mm], thickness: (d2 − d1)/2 = 0.011 [mm] (d2: 0.402 [mm]). 

A chart (: Nomograph) is given in Figure 3, illustrating the relationship of γ and δ//L. Using this 
chart, each Young’s modulus Ei in a multi-layered material can be calculated from the relational 
expression given in Equation (14). 

3.1.1. First Step Procedure (As a Two-Layered Specimen) 

Under the condition of P = 39.24 [mN], δ = 64.7 [mm] (i.e., δ/L = 0.5176) is measured for a double 
layer and then the value of γ is taken from Figure 3 (γ = 2.470). Therefore, using Equation (14), the 
combined flexural rigidity (I1 = 1.023 × 10−15 [m4]: SWPA, I2 = 2.584 × 10−16 [m4]: Cu) is derived as follows 

422
12211 10480.2470.2125.003924.0 −×=×==+ γPLIEIE  (19) 
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3.1.2. Second Step Procedure (As a Single-Layered Specimen) 

Similarly, δ is measured for a single layer after removing a second layer (Cu). In the condition 
of P = 34.34 [mN] for a SWPA single layer with length: L1 = 125.5 [mm], diameter: d1 = 0.38 [mm], δ = 
64.4 [mm] (i.e., δ/L = 0.5148) is measured and γ is taken newly from Figure 3* (γ = 2.51) [*: Drawing 
is omitted here.]. Therefore, the flexural rigidity (I1 = 1.023 × 10-15 [m4]: SWPA) can be rewritten as 
follows from Equation (14) follows. 

422
111 10135.251.2125.003434.0 −×=×== γPLIE  (20) 

Using the simultaneous Equations (19) and (20), Young’s modulus E1, E2 of each layer is 
calculated as E1 = 209.3 [GPa] for a SWPA layer and E2 = 129.9 [GPa] for a Cu layer. 

3.2. Method 2: (Measurement of λ Only) 

A similar chart (: Nomograph) is given in Figure 4, illustrating the relationship of γ and λ/L. 
Using this chart, each Young’s modulus Ei in a multi-layered material can be calculated from 
Equation (14). As an example, Young’s modulus Ei of each layer is obtained for a SWPA thin wire (: 
first layer) + a Cu thin layer (: second layer) mentioned above (see the tertiary Section 3.1). 

3.2.1. First Step Procedure (As a Two-Layered Specimen) 

Under the condition of P = 34.34 [mN], λ = 89.5 [mm] (i.e., λ/L = 0.7184) are measured for a double 
layer and then the value of γ is taken from Figure 4 (γ = 2.220). Therefore, from Equation (14) the 
combined flexural rigidity (I1 = 1.023 × 10-15 [m4]: SWPA, I2 = 2.584 × 10-16 [m4]: Cu) can be written as 
follows 

422
12211 10414.2220.2125.003434.0 −×=×==+ γPLIEIE  (21) 

3.2.2. Second Step Procedure (As a Single-Layered Specimen) 

Similarly, λ is measured for a single layer after removing a second layer (Cu). In the condition 
of P = 29.43 [mN] for a SWPA single layer, λ = 89.5 [mm] (i.e., λ/L = 0.716) is measured and then γ is 
taken newly from Figure 4* (γ = 2.15) [*: Drawing is omitted here.]. Therefore, the flexural rigidity (I1 
= 1.023 × 10−15 [m4]: SWPA) can be rewritten as follows from Equation (14). 

422
111 10136.215.2125.002943.0 −×=×== γPLIE  (22) 

From the simultaneous Equations (21) and (22), Young’s modulus E1, E2 of each layer is 
calculated as E1 = 209.5 [GPa] for a SWPA layer and E2 = 104.57 [GPa] for a Cu layer. 

4. Experimental Investigation 

In order to assess the applicability of the Compressive Circular Ring Method, several large 
deformation experiments were carried out using a two-layered wire [Cu (Copper) layer: an 
electrodeposited material (0.011 mm thick, 500 mm long) + SWPA layer: a spring steel wire (0.38 mm 
diameter, 500 mm long)]. The experimental set-up is shown in Figure 5 (which shows a thin multi-
layered plate, for example). Since Young’s modulus of each layer in the two-layered material is 
unknown, the measuring experiments were carried out by adopting the two-step procedure. In every 
step of the procedures, a vertical displacement δ and a horizontal displacement λ are measured for 
several compressive loads P by using a grid paper with 1mm spacing. 

Young’s moduli of Cu and SWPA obtained by applying Method 1 and Method 2 are shown in 
Figures 6 and 7, respectively. Here, the influence of a load (P) upon Young’s modulus (E) was 
examined. 

The figures were described under a two-layered condition 
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In a Cu layer (see Figure 6), the measured values of Methods 1 and 2 remain nearly constant for 
a compressive load and the standard deviation (S.D.) is very small although every method has a little 
scattered values. As a whole, the mean Young’s moduli (shown as Av.: Average) determined by the 
two methods are reasonably in good agreement with each other. On the other hand, Trends similar 
to that of Figure 6 is observed for Young’s moduli of a SWPA layer (see Figure 7). The mean values 
obtained by the two methods agree well. 

 

Figure 5. Experimental set-up (as an example, a multi-layered plate specimen is shown).  

 

Figure 6. Comparison of Young’s moduli of an electrodeposited material (Cu: E2) between the two 
measuring methods for various values of the load P. (Note: E1 of SWPA is known previously.). 
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Figure 7. Comparison of Young’s moduli of a spring steel wire (SWPA: E1) between the two 
measuring methods for various values of the load P. (Note: E2 of Cu is known previously.). 

5. Conclusions 

The “Compressive Circular Ring Method” is proposed as a new and simpler material testing 
method for measuring Young’s modulus of each layer in a flexible multi-layered material. 

From the results of theoretical and experimental analyses, the new method is effective for 
measuring Young’s modulus of each layer in a flexible multi-layered material. Furthermore, the 
proposed new method is applicable widely to Young’s modulus measurement in a thin layer formed, 
for example, by PVD (Physical Vapor Deposition), CVD (Chemical Vapor Deposition), Coating 
(Graphite, Metal Oxide), Paint (Lacquer), etc. 
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