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Abstract: The time-averaged electronic speckle pattern interferometry (ESPI) is employed to 
measure the frequencies and mode shapes of thin, cantilevered plates with root-slit. The first 12 
order linear resonance frequency and mode shape of an intact cantilevered plate is determined by 
using FEM calculation. The dynamic response of the intact specimen forced by a PZT actuator is 
measured and its super-harmonic resonance of forced response is investigated experimentally. The 
results show that the principal mode shape of super-harmonic vibration is similar to its natural 
modal. In contrast to linear forcing vibration, the threshold of force for super-harmonic resonance 
is much higher than that of the former. In addition, linear free response of four cantilevered root-
slit plates with variation length of slit are analyzed by applying the FEM calculation, and their 
responses of forcing vibration were measured by using the ESPI method. The validity and accuracy 
of the numerical prediction are confirmed through experimental studies. The present work shows 
that the ESPI technique can provide whole-field and real-time measurement for vibration analysis 
and can also be employed for validation of the FEM calculation. 

Keywords: time-averaged electronic speckle pattern interferometry; vibration response measurement; 
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1. Introduction 

It is well known that plate, shell, rod and beam are widely used in the construction of machines. 
Among them, thin plate is one of the most common structural elements in engineering design such 
as aviation and automobile. Its dynamic response is of importance to the design engineer and the 
study of the vibration behavior of a plate with a crack is a problem of great practical interest [1,2]. 
Numerous papers have been published on the vibration analysis of a finite cracked plate by using 
theoretical and numerical methods [3–7]. Nevertheless, compared with numerical studies in the past, 
there have been relatively few investigations on the behavior of the cracked plates by experimental 
measurement [8–10]. 

Before the advent of the finite element method, the vibration characteristics of plates with crack 
are studied by means of mathematical methods. In the literature [3], the deflection of the rectangular 
plate with crack is described by the Green’s function and then the first kind of homogeneous 
Fredholm integral equation is obtained. Stahl and Keer adopted the dual-series equations to study 
vibration and stability problems of the rectangular cracked plate, and finally converted into a solution 
of the second kind of homogeneous Fredholm integral equation [4]. For more complex structures, 
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application of finite element methods comes naturally. In the research [5], by applying the Galerkin’s 
method and the incremental harmonic balance approach, the effects of various system parameters on 
the regions of instability and the non-linear response characteristics of rectangular cracked plates was 
investigated. In the work of Huang et al., the Ritz method was adopted to determine the frequencies 
and nodal patterns of thick, cracked rectangular plates analyzed using Mindlin plate theory. The 
effects of the length, location, and orientation of crack on frequencies and nodal patterns of 
cantilevered cracked rectangular plate have been investigated [6]. In the investigation of the linear 
and nonlinear vibration response of a cracked cantilevered rectangular plate, it was reported in 
literature [7] that a wider veering region entails continuous interchanging between the modes can be 
observed, and there exists fast mode switching in the smaller veering (or crossing) region. These 
phenomena obtained by the FEM prediction should be needed for validating furtherly by 
experimental measurement. 

In this paper, the time-averaged ESPI technique and finite element method were used to study 
the linear and nonlinear vibration characteristics of an intact cantilevered plate and four cantilevered 
root-slit plates with different length of silt. This work was motivated by the whole-field and real-time 
mode shape observation of the ESPI method and the requirement for the vibration response 
validation of the FEM prediction. The first 12 order linear resonance frequency and mode shape of 
an intact cantilevered plate is determined by using FEM calculation. The ESPI method was then 
applied to measure the dynamic responses of the intact specimen under linear vibration and super-
harmonic resonance. The measurement results for linear vibration well agree with those of the 
numerical simulation. The principal mode shape and threshold force of super-harmonic resonant 
response was obtained in the experimental investigation. The dynamic characteristics of four 
cantilevered root-slit plates are studied by FEM and ESPI methods, respectively. As analyzed by 
numerical method in the paper [7], the phenomena of the switching of mode shapes being owing to 
crack/slit length variation were verified experimentally in the end of this research. 

2. Experimental Work and Mode Analysis 

2.1. Specimens Preparation and Numerical Model 

Five specimens used in this paper are aluminum rectangular plates of length 210 mm, width 80 
mm and thickness 1.43 mm. As depicted in Figure 1, the specimens are clamped at one end and work 
as cantilever plates, the size of their free part is 165 × 80 × 1.43 mm3. Among these plates, one plate 
was in good condition (Figure 1a), the other four specimens as shown in Figure 1b–e have a side slit 
at the root with a length of 20 mm, 40 mm, 60 mm and 70 mm cut by electrical discharge machining, 
respectively. 

The plates under test are excited by a small PZT actuator with diameter of 10 mm and thickness 
of 0.4 mm. The PZT actuator is attached the opposite face of the measured surface, the nodal lines 
should be avoided which can be predicted by FEM in advance. Thanks to the repetition of the PZT 
excitation, harmonic wave-field is formed in the tested plates and generate deflection displacement. 
Figure 2 illustrates the schematic diagram for deflection vibration measurement using the time-
average electronic speckle pattern interferometry (ESPI) in this study. For the space limit, the 
measurement principle of ESPI method is not introduced in this paper, the readers can refer the 
literature [11] for detail. The sinusoidal vibration is measured during a frequency sweep using the 
optical setup illuminated in Figure 2. In the present study, a laser light with 80 mW and wavelength 
of 671 nm is used as a coherent light source. To achieve the sinusoidal output, a digitally controlled 
function generator (RIGOL DG1022Z) with maximum output frequency of 25 MHz connected to a 
power amplifier is employed. 
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Figure 1. Photograph of five thin aluminum plates (a) Intact and (b–e) with different length slit cut 
by EDM. 

 
Figure 2. The setup for out-of-plane vibration testing. 

The finite element software ANSYS® is used for linear vibration analysis of aluminum 
rectangular plates with or without a slit. The physical and geometric parameters of the finite element 
model are Young’s modulus E = 70 GPa, Poisson’s ratio  = 0.33, mass density ρ = 2700 kg/m3 and 
size of 165 × 80 × 1.43 mm3, boundary condition is CFFF for the intact specimen. All the numerical 
results of resonant mode shapes are calculated by the commercial code ANSYS package in which 
SHELL 181 is selected. The shell is divided into a number of units with size of 1 mm × 1 mm × 1.43 mm. 

2.2. Natural Frequencies and Mode Shapes 

Table 1 shows the results of the experimental measurement and the finite element simulation of 
the first 12 and 15 order modes’ natural frequencies of cantilevered specimens 1–3 and 4–5, 
respectively. The natural frequencies obtained experimentally, shown in Table 1, is measured by 
frequency-sweeping. Figures 3a–l and 3A–L, respectively, present the first 12 order mode patterns 
for intact cantilever plate from the finite element method simulation and ESPI experimental 
measurement. For the convenience of comparison, the results from FEM calculation were converted 
into fringe patterns. The brightest speckle fringes shown in Figure 3A–L denote nodal area where 
transverse displacement equals zero. Comparing with the FEM results presented in Figure 3a–l, it 
can be seen that the experimental results of the first 12 order modes are quite consistent with those 
of numerical prediction. Numerical and experimental results of natural frequencies of the first 12 
modes are listed in column 2 in Table 1. All the experimental measured frequencies are almost equal 
to the numerical frequencies. Due to local stiffness enhance effect by the bonded PZT actuator, it can 
be seen, underlined digits as shown in Table 1, that some mode frequencies obtained by ESPI are 
greater than those of FEM prediction. 
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(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L) 

Figure 3. Mode shapes of the first 12 resonant modes of CFFF aluminum plate from (a–l) FEM 
simulation and (A–L) experiment measurement, respectively. 

Table 1. Natural frequencies (Hz) of the tested specimens from FEM and Experimental methods, respectively. 

Mode 
Specimen 1 Specimen 2 Specimen 3 Specimen 4 Specimen 5 

FEM ESPI FEM ESPI FEM ESPI FEM ESPI FEM ESPI 
1 44.176 44.2 42.698 42.3 38.359 37.2 31.802 29.9 25.662 23.4 
2 191.79 189.6 182.52 178.9 159.33 152.4 122.07 119.0 98.036 93.0 
3 274.96 276.6 266.34 265.3 249.52 244.6 229.20 228.0 216.11 210.8 
4 623.69 621.4 589.87 585.7 489.99 473.5 385.16 383.9 350.88 348.1 
5 771.77 777.8 748.34 747.1 703.39 688.4 659.81 658.0 632.32 619.7 
6 1195.0 1195.0 1113.4 1107.8 898.68 886.3 815.589 828.6 797.70 806.1 
7 1265.2 1287.9 1258.1 1289.0 1251.0 1245.6 1218.6 1218.9 1142.4 1127.2 
8 1527.8 1524.8 1480.1 1475.2 1314.5 1309.0 1258.9 1292.8 1251.4 1271.6 
9 1690.4 1696.8 1614.9 1628.1 1529.8 1523.6 1474.0 1490.1 1424.4 1435.7 

10 1968.4 1973.2 1844.5 1844.6 1717.2 1700.1 1631.6 1647 1579.5 1588.9 
11 2352.0 2329.4 2233.1 2234.2 2051.7 2027.5 1926.1 1939 1822.3 1821.7 
12 2546.2 2548.7 2413.5 2410.0 2294.3 2256.5 2099.3 2106.3 2069.9 2068.3 
13       2554.2 2580.8 2521.1 2512.6 
14       2662.1 2692 2571.9 2602.7 
15       3026.7 3048 3010.2 3011 

2.3. Nonlinear Vibrating Response of the Intact Plate 

In general, there is a range of external forces that can be applied, the most common of which for 
vibration problems is a continuous single-frequency sine wave force called harmonic forcing. As the 
input load amplitude increases and the material will yield and then exhibit a region of non-elastic 
behavior, the response of force-displacement becomes nonlinear. It is possible that the restoring force 
is not linear, and so for the single frequency harmonic input, the system response contains multiple 
components each with a different frequency. If the response harmonic frequency is three or five times 
as the input frequency, and so on, this phenomenon is so-called superharmonic resonance. 

The forcing amplitude and corresponding response modes of the tested intact plate is 
experimental investigated. In order to determine the predominant response frequency, a high-speed 
camera was employed, and three series images of the intact specimen during its vibrating at 
frequencies of 124.45 Hz, 207.43 Hz and 622.4 Hz (622.4 Hz is its natural frequency of the first fourth 
mode) were recorded, respectively. All images were recorded at speed of 2000 fps. The intensity of 
one point was obtained from the series images (the number of selected images calculated is 1000 
frames for each series.) by LUT and its FFT spectra is plotted as in Figure 4. As presented in Figure 4, 
when the forcing frequency is equal to 1/3, 1/5, even 1/7 of the natural frequency, the corresponding 
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response modes measured by experiment are almost same as the natural mode shape. It can be found 
immediately that the principal response frequency is five times and three times than the input forcing 
frequency in Figure 4a and 4b, respectively. Due to the component presence of five times or three 
times of the input frequency, the tested specimen exhibits a superharmonic resonance. 
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Figure 4. FFT spectra of the intact specimen vibrating at different frequency. 

2.4. Mode Shapes Vary with the Length of Root-Slit Variation 

For the space limit, only the results of specimen 5 were presented in this paper. Figure 5 shows 
the first 14 mode shapes of specimen 5 obtained by FEM simulation and experimental measurement, 
respectively. The maps of resonant mode shapes from the finite element calculation are presented for 
comparison with the experimental observation. It can be seen that the results from experimental 
measurement keep excellent agreement with those of FEM prediction. 

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) 

              
(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L) (M) (N) 

Figure 5. Mode shapes of first 14 resonant modes of cantilevered aluminum plate with 7 cm root-silt: 
(a–n) FEM simulation and (A–N) Experiment measurement, respectively. 

As expected, the resonant response of the plates with root-slit become sensitive to the slit length 
increasing. In order to closely see the mode shapes variation with the slit length increasing, two 
representative case are presented in Figures 6 and 7. Figure 6 depicts mode 6, 7 and 8 variation as the 
slit length increasing, which shows that mode 6 changes its mode from shape (2, 1) to shape (3, 0) 
with the slit length variation, while its natural frequency is sensitive to slit length variation. Due to 
slit length variation, mode 7 varies modal shape (0, 2) into (2, 1), and mode 8 switches modal shape 
(4, 0) to shape (0, 2). For higher modes 10, 11 and 12, it can be observed from Figure 7 that response 
shapes are more affected by the length of slit and become complicated. [Note: the definition of mode 
shape (m, n) can be found in textbooks of Vibration Theory. Here, m stands for modal order of the 
bending, and n is for modal order of the torsional vibration.] 



Proceedings 2018, 2, 539 6 of 7 

 

 
Figure 6. Mode 6, 7 and 8 variation with the slit length increasing. 

 
Figure 7. Mode 10, 11 and 12 vary with the slit length variation. 

3. Concluding Remarks 

Using electronic speckle pattern interferometry (ESPI) method described in the present study, 
the vibration shapes of the tested plate surface can be full-field measured in real-time, and its natural 
frequencies can be obtained. Comparing with the calculation of the FEM method, it is indicated that 
the results from experimental measurement are excellent agreement with those of numerical 
prediction. It is also noted that the ESPI method can be used to provide measurement and analysis of 
nonlinear vibration. From the present experimental investigation, it was observed that, during 
superharmonic vibration of the cantilever plate, the principal mode shape is very similar to its natural 
mode, and the natural frequency is predominant in the response frequencies. The experimental work 
shows that superharmonic resonance only comes up after the driving force exceeds a threshold. 

Furthermore, this research work has been demonstrated that the ESPI method can be employed 
to verify the FEM calculation. The results of the plates with root-slit obtained by experimental 
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measurement were well validated with the results obtained by the numerical analysis. It should be 
pointed out that the ESPI method is suit for measuring deformation or displacement in the range of 
several ten micrometer. 
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