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Abstract: Limited research has studied the use of Lidar in mapping coastal geomorphology. The 

purpose of this project was to build on existing research and develop an automated modeling 

approach to classify the coastal geomorphology of barrier islands and test this at four sites in North 

Carolina. Barrier islands are shaped by natural coastal processes, such as storms and longshore 

sediment transport, as well as by human influences, such as beach nourishment and urban 

development. An automated geomorphic classification model was developed to classify Lidar data 

into 10 geomorphic types over four time-steps from 1998 to 2014. Tropical storms and hurricanes 

had the most influence on change and movement. On the developed islands, there was less influence 

of storms, owing to the inability of features to move because of coastal infrastructure. Beach 

nourishment was the dominant influence on developed beaches, because this activity ameliorated 

the natural tendency of an island to erode. Understanding how natural and anthropogenic processes 

influence barrier island geomorphology is critical to predicting an island’s future response to 

changing environmental factors such as sea-level rise. The development of an automated model 

equips policy makers and coastal managers with information to make development and 

conservation decisions, and the model can be implemented at other barrier islands. 
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1. Introduction 

Beautiful beaches and expensive properties are found on barrier islands, which are features that 

parallel the coastline and protect the mainland from waves and storms. Their location and sandy 

composition make barrier islands both economically valuable and physically vulnerable. Studies 

have shown that, over 5 years, a barrier island can migrate over 100 m and experience a 50% change 

in volume [1,2]. Understanding the evolution of barrier island geomorphology can assist policy 

makers and coastal managers with decisions regarding future land-use development. In North 

Carolina, the entire coastline is fronted by a chain of barrier islands. A typical barrier island system 

is composed of a gently sloping continental shelf, a sandy island, and a back-barrier marsh that 

extends into an estuary; individual barrier islands are separated by tidal inlets [3]. 

Lidar data have been used to study coastal morphology [1,2,4–8]. In these studies, Lidar and 

other data (such as aerial photography) have been used to map shorelines and marshes, but to our 

knowledge there has not been a study that has developed an automated method for classifying all 

geomorphic types on a barrier island. This project developed a model that classifies barrier island 

features from Lidar data and tested this approach on four islands in North Carolina (Figure 1). The 
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second objective was to quantify change over time and correlate the results with human and 

environmental processes. The North Carolina coast has a diverse chain of barrier islands. In 

particular, the barrier islands in the southern part of the state are distinctively different from those in 

the north, which is largely due to differences in subsurface geology and coastline orientation [9]. 

 

Figure 1. Study areas: Wrightsville Beach and Masonboro Island are located in New Hanover County 

in southern North Carolina (NC), and Currituck and Corolla are in Currituck County in the north. 

2. Methods 

The following geomorphic feature types were studied: (1) Intertidal: region that is inundated 

daily because of tides; (2) Supratidal: region that is inundated occasionally because of astronomically 

high tides or severe weather events; (3) Dunes: linear features that run parallel to the shoreface and 

have the highest elevation; (4) Hummock: relic dune located behind the primary dune, at a lower 

elevation than dunes but at a higher elevation than other surrounding features, having a round shape; 

(5) Overwash: slightly elevated and flat areas located in the back barrier; (6) Swale: low depressions 

located between dunes and upland areas; (7) Channel: low depressions, cut by water, located adjacent 

to the supratidal region; (8) Upland: flat portions of the barrier island, behind the primary dune. 

Fieldwork was conducted from May to December 2016 to collect ground control points (GCPs) 

to test the model classification accuracy. Each study area was segmented by transects, cast 100 m 

apart, perpendicular to the island centerline. GCPs were collected using a Trimble 5800 series Real 

Time Kinematic (RTK) GPS along 25 randomly selected transects per study area. Along each transect, 

the center of each geomorphic feature was recorded with position and elevation (X, Y, Z), feature 

type, and a GoPro Hero2 was used to collect videos. The Trimble RTK has 10 cm horizontal and 20 

cm vertical accuracy when the data is collected in “stakeout” mode. The GCPs were post-processed 

in Trimble Office, exported as CSV files, and imported into ArcGIS. 

Lidar data was acquired from NOAA’s Digital Coast using the Data Access Viewer tool 

(www.coast.noaa.gov/dataviewer/#/lidar/search/). Each dataset was examined for point spacing and 

accuracy, and the highest quality datasets were used in this study. Different datasets were used for 

the northern and southern areas because no single data covered all four areas. For Masonboro and 
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Wrightsville, the Lidar dates were: 1998, 2005, 2010, and 2014, and for Currituck and Corolla: 2001, 

2005, 2009, and 2014. Research has tested the spatial resolution for examining volume change in 

coastal features and determined that 1–2 m is optimal [10]; the inverse distance weighted (IDW) 

interpolation technique was the best for producing raster surfaces [11,12]. After spatial sensitivity 

tests were conducted, Lidar ground returns were interpolated using IDW with a 10-point search and 

maximum 10 m radius to create Digital Elevation Models (DEMs) with a 1 × 1 m cell size. DEM 

accuracy was tested by comparing interpolated elevation values to field collected GCP data. An 

average elevation difference of less than 10 cm was considered acceptable on the basis of RTK 

accuracy and the time span from Lidar data collection to fieldwork (2 years). For developed areas 

(Wrightsville and Corolla), anthropogenic features were extracted from the ground return DEM prior 

to classifying the geomorphic features. 

The automated classification model consists of a series of steps that identified the unique 

characteristics of each type of geomorphic feature (Table 1). The model requires four inputs: (1) a 

DEM, (2) a study area polygon, (3) an ocean front line used to determine marine water from estuarine 

water, and (4) Mean Higher High Water (MHHW) and Highest Astronomical Tide (HAT)  height 

measurements (in meters) for the study area and corrected to NAVD88. The model result is a polygon 

dataset (feature class in an ArcGIS geodatabase) with attributes for each type of geomorphic feature 

in the study area. 

Table 1. Parameters to classify geomorphic features. Mean Seal Level (MSL), Mean Higher High 

Water (MHHW), Highest Astronomical Tide (HAT), and Topographic Position Index (TPI). 

Feature Classification Parameters 

Intertidal MSL < elevation < MHHW 

Supratidal MHHW < elevation < HAT 

Dune 40 m TPI >= 150, Shape Index < 0.6, hummock intersecting dune dune = 

Hummock 12 m TPI >= 50, Shape index > 0.6, Not intersecting a dune  

Overwash 200 m TPI > 50 

Swale 40 m TPI <= −50, Not intersecting supratidal 

Channel 40 m TPI <= −50, Intersecting supratidal 

Upland 200 m TPI <= 50 

Calculation of the Topographic Position Index (TPI) is a critical component to the model [13,14]. 

The equation to calculate the TPI is (1): 

TPI =  ((DEM –  Focal Mean)  + (0.5)) (1) 

For each cell in the DEM, the focal mean was computed and compared to the elevation of the 

cell. A cell that is higher than its neighboring cells has a positive TPI value, while a cell that is lower 

than its neighboring cells has a negative TPI. The neighborhood distance for the focal mean depends 

on the size of the feature. Small features are identified using small neighborhoods, and larger features 

are identified using larger neighborhoods [14]. Distance sensitivity tests were conducted, and then 

optimized neighborhood sizes and TPI thresholds were determined for each geomorphic feature. 

Each TPI calculation has a radius (distance) and number of cells that define the neighborhood around 

each cell. 

The TPI index was scaled to the DEM for each of the study areas and was based on the mean 

and standard deviation of the focal statistics for each DEM. The scaling enables versatility across 

study areas so that the model uses the same TPI equations for each type of feature, but also 

standardizes the index values based on the DEM for each area. The equation to calculate the scaled 

TPI is (2): 

TPI (scaled)  =  int(((TPI − mean/stdev) ∗ 100)  +  0.5) (2) 

The TPI classification identifies topographic peaks and valleys, thus swales and channels were 

grouped into the same class. These features were then segregated on the basis of their proximity to 
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the supratidal areas. Channels are valleys where water cuts through the barrier island, usually 

perpendicular to the beach, and these features intersect the supratidal region. Swales are valleys 

between dunes, usually parallel to the beach, so they are adjacent to dunes and do not intersect the 

supratidal areas. 

Overwash fans are found adjacent to the back barrier. So, the distance between overwash and 

ocean was calculated, and areas that were greater than 0.5× the standard deviation (stdev) of the 

distance were classified as overwash, whereas areas closer to the ocean were reclassified as either 

hummock or dune, depending on the TPI value. Dunes and hummocks have similar TPI values, so a 

shape index was used to differentiate them. Dunes are generally oval-shaped, while hummocks are 

circular. The equation to calculate the shape index is (3): 

Shape Index =  (√Area/π)/(Shape Length/(2 ∗ π)) (3) 

Shape indexes ≤0.6 were classified as dunes, and shape indexes >0.6 were classified as 

hummocks. Not all dunes are long and linear, so some were misclassified as hummocks. To address 

this, the distance between dunes and hummocks was calculated, and hummocks that were located 

closer than 0.5× stdev of the distance to dunes were reclassified as dunes. 

The classified maps of each study area were analyzed for change over time. In the northern areas, 

the time steps were 2001–2005, 2005–2009, 2009–2014, and 2001–2014, and in the southern areas the 

time steps were 1998–2005, 2005–2010, and 2010–2014. Feature area, elevation, and volume were 

computed for each time period. Several methods were used to capture feature movements. 

Oceanfront shoreline dynamics were compared using AMBUR [15]. Dune movement was calculated 

using Detect Feature Change and Near tools in ArcMap. Change statistics were calculated using 

polygon overlay, and then cross-tabulation matrices were created. A statistically significant feature 

change was identified by comparing the expected and observed change [16,17]. 

3. Results and Discussion 

The geomorphic classification model was developed in ESRI's ModelBuilder and run 16 times 

(four study areas and four dates). The fieldwork GCPs were comparable to the Lidar data and could 

therefore be used to assess the geomorphology classification results. Overall, the model map accuracy 

was 76% (Masonboro), 77% (Corolla), 78% (Wrightsville), and 81% (Currituck). Changes were 

measured using: (1) elevation, volume, area, and percentage of each feature type; (2) shoreline and 

dune movement; (3) statistically significant changes using cross-correlation matrices. At all four 

study sites, intertidal and supratidal features had the lowest average elevation, and dunes had the 

highest average elevation. Most features experienced minimal change in elevation over the time 

period (1998–2014). Across all study areas, the largest change in volume was from 2005 to 2009/2010. 

Upland was the largest feature on Wrightsville and Currituck at 30% of the area and on Corolla 

upland was 40%. Alternatively, on Masonboro, intertidal and supratidal features were the largest 

area at ~50% of the island. Changes were less substantial on developed islands in comparison to 

undeveloped ones. For example, on Masonboro, the largest change was a 17% increase in the 

supratidal areas from 1998 to 2005, whereas, on Wrightsville, supratidal features increased by 3%. On 

Masonboro and Wrightsville, from 1998 to 2005, most of the shoreline was eroding. The mean 

shoreline change was −3.1 m/yr on Masonboro and −0.5 m/yr on Wrightsville, with 72% of the 

shoreline eroding on Masonboro, and 52% of the shoreline eroding on Wrightsville. Shoreline 

accretion rates increased, and erosion rates decreased from 2005 to 2010 when the mean shoreline 

change rate was −1.1 m/yr on Masonboro and +0.5 m/yr on Wrightsville. From 2010 to 2014, the 

shoreline was again dominated by erosion. In contrast, the northern region was accreting from 2001 

to 2005, when the net shoreline change was +0.6 m/yr at Currituck and +0.8 m/yr at Corolla. Currituck 

had 44% of the shoreline eroding, and Corolla had 22%, resulting in areas of both erosion and 

accretion. From 2005 to 2009, the majority of the shoreline was accreting, with the mean shoreline 

change of +1.5 m/yr on Currituck and +2.7 m/yr on Corolla. From 2009 to 2014, almost the whole 

(more than 90%) shoreline experienced a large amount of erosion, with a mean shoreline change of 

−3.4 m/yr on Currituck and of −2.7 m/yr on Corolla. 
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The movement/migration of dune features was calculated by measuring the difference in spatial 

position through time and was defined as: movement (3 m ≤ distance ≤ 25 m), no change (<3 m), 

deletion (feature completely eroded), new dune (>25 m). On Masonboro, the largest amount of 

movement and the creation of new dunes occurred from 2005 to 2010. On Wrightsville, the largest 

amount of dune movement was from 2010 to 2014, while the largest amount of deletion was from 

2005 to 2010. On Currituck, a similar amount of movement occurred from 2001 to 2005 and from 2010 

to 2014. The largest amount of deletion was from 2005 to 2009. On Corolla, the largest amount of 

movement and creation of new features occurred from 2009 to 2014, while the largest amount of 

deletion was from 2005 to 2009. The mean dune movement ranged from 1.1 m (Masonboro from 2010 

to 2014 and Currituck from 2009 to 2014) to 3.9 m (Wrightsville from 2005 to 2010), and the direction 

was consistently to the southwest. 

Polygon overlay and cross-tabular change matrices were generated for each time period. Net 

gain and loss (in area) were computed per feature type and time period. Significant change was 

calculated by comparing the observed and expected change [16]. On Masonboro and Wrightsville, 

the largest significant changes were supratidal and intertidal. Less significant changes occurred in 

the northern region (Currituck and Corolla), and the most recent time period had the least change. 

Regional differences between the north (Currituck and Corolla) and the south (Masonboro and 

Wrightsville) were much larger than the differences between developed and undeveloped barrier 

islands. There are two primary reasons why the north is different from the south: geologic setting 

and beach nourishment. The developed islands had less change and dune movement than the 

undeveloped islands, because development prevents natural processes such as washover and roll-

over. This results in features on the developed islands being “locked” in place, which creates 

increased shoreline erosion and island narrowing [9]. 

Storms were a dominant process influencing the four study areas. Post-storm AMBUR analysis 

computed the average shoreline changes of −3 m/yr (Masonboro), −0.45 m (Wrightsville), −3.4 m/yr 

(Currituck), and −2.7 m/yr (Corolla). A feature change analysis documented dune erosion and the 

transition of dunes to supratidal and intertidal and channels. On the undeveloped islands, there was 

an increase in overwash. In the southern study areas, the stormiest period was from 1998 to 2005, 

when the area was impacted by eight major storms, four of which were hurricanes. Only a few small 

storms impacted the northern study areas between 2001 and 2009, and then, in 2011, Hurricane Irene, 

a category 3 storm, passed directly through the region, likely responsible for the changes observed 

on Currituck and Corolla. 

Beach nourishment temporarily increases the amount of sediment and overall elevation of the 

oceanfront shoreline (White and Wang, 2003). However, nourishment has been shown to result in the 

largest amount of storm-induced erosion [11]. Beach nourishment took place at Masonboro and 

Wrightsville in 2006 and 2010, just prior to the Lidar data collection. Shorelines accreted from 2005 to 

2010 with an average shoreline change rate of +1.2 m/yr at Masonboro and +0.5 m/yr at Wrightsville. 

This accretion was followed by a period of high erosion from 2010 to 2014: −1.7 m/yr at Masonboro 

and −3.5 m/yr at Wrightsville. The location of accretion corresponded to the areas of highest erosion. 

4. Conclusions 

One of the benefits of using Lidar data for studying coastal systems is that it provides elevation; 

therefore, in sandy coastal environments, where many different features have similar reflectance 

properties, features can be distinguished on the basis of topography [18]. This study developed an 

automated model to classify barrier island geomorphic features. On average, the model accuracy was 

80%, which is acceptable given that it can be difficult to precisely measure the boundaries of different 

types of features that gently vary over the terrain. Historical Lidar can be used to analyze change 

through time, and geospatial techniques can measure the distance and direction that features have 

moved. The model was tested at undeveloped and developed islands and islands with different 

geologic settings. When storms occur, they are the dominant force influencing change. Between 

stormy periods, other activities, such as beach nourishment, can temporarily increase the oceanfront 
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elevation, which later leads to the greatest rates of erosion. Lastly, urban development reduces the 

amount of change because natural processes are prohibited from moving dunes and adjacent areas. 
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