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Abstract: This paper deals with (both supervised and unsupervised) classification of multispectral 
Sentinel-2 images, utilizing the abundance representation of the pixels of interest. The latter pixel 
representation uncovers the hidden structured regions that are not often available in the reference 
maps. Additionally, it encourages class distinctions and bolsters accuracy. The adopted 
methodology, which has been successfully applied to hyperpsectral data, involves two main 
stages: (I) the determination of the pixel’s abundance representation; and (II) the employment of a 
classification algorithm applied to the abundance representations. More specifically, stage (I) 
incorporates two key processes, namely (a) endmember extraction, utilizing spectrally homogeneous 
regions of interest (ROIs); and (b) spectral unmixing, which hinges upon the endmember selection. 
The adopted spectral unmixing process assumes the linear mixing model (LMM), where each pixel 
is expressed as a linear combination of the endmembers. The pixel’s abundance vector is estimated 
via a variational Bayes algorithm that is based on a suitably defined hierarchical Bayesian model. 
The resulting abundance vectors are then fed to stage (II), where two off-the-shelf supervised 
classification approaches (namely nearest neighbor (NN) classification and support vector 
machines (SVM)), as well as an unsupervised classification process (namely the online adaptive 
possibilistic c-means (OAPCM) clustering algorithm), are adopted. Experiments are performed on a 
Sentinel-2 image acquired for a specific region of the Northern Pindos National Park in 
north-western Greece containing water, vegetation and bare soil areas. The experimental results 
demonstrate that the ad-hoc classification approaches utilizing abundance representations of the 
pixels outperform those utilizing the spectral signatures of the pixels in terms of accuracy. 
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1. Introduction 

Land cover analysis and classification is essential for various environmental and mapping 
applications. Land classification yields thematic maps that integrate land cover materials. Sentinel-2 
data has gained leverage in the remote sensing community due to its high spatial and high temporal 
resolution. The Sentinel-2 multispectral high-resolution sensor (MSI) operates on thirteen different 
bands, of which four have a resolution of ten meters, six have a resolution of twenty meters and 
three have a resolution of sixty meters. Hence, Sentinel-2 data provide information on the reflectance 
of the land surface for many different wavelengths on a local and regional scale. Regardless of the 
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sensor’s spectral resolution, these images are challenged by the presence of mixed pixels, which 
depict mixtures of distinct materials. 

Each mixed pixel is associated with the electromagnetic reflection of various materials 
measured in numerous spectral bands belonging to the surface depicted by the pixel. These 
measurements constitute the spectral signature of the pixel. Two processes are fundamental in the 
analysis, namely (a) the detection of the constituent components of mixed pixels as well as the 
proportions in which they appear; and (b) the identification of homogeneous regions. The first 
objective is tackled via spectral unmixing and the second via the use of classification algorithms. 

Classification [1–4] partition the set of pixels from the input image into compact, homogeneous 
groups. It is performed in either a supervised or unsupervised manner, usually operating in the 
spectral signatures of the pixels. Hitherto, the mixed surface features are tackled by supervised 
classification approaches, which require the availability of a labeled set of pixels. These pixels form 
the training set that is used to teach the classifier the underlying pixel classification task in order to 
further classify the unlabeled pixels. Popular classification methods proposed in the literature 
include the nearest neighbor classifier [5,6] and support vector machines (SVMs) [7]. 

Several classification methods have been applied to Sentinel-2 images. In this work, we assess 
the performance of a recently proposed classification method [2], originally proposed for hyperspectral 
images on Sentinel-2 data. The main idea of the methodology is to first perform spectral unmixing 
based on a asuitably selected set of endmembers and represent each pixel by its associated 
abundance vector (constituted from the corresponding abundance values). Then, the classification of 
the pixels is performed on the abundance vectors of the pixels and not on their spectral signatures 
(two supervised and one unsupervised classification algorithm are utilized). To assess the 
performance of the adopted methodology on Sentinel-2 data, we compared it with a case where 
spectral signature pixel representations are considered. To the best of our knowledge, this is the first 
attempt to utilize a combination of both spectral unmixing and classification tasks on Sentinel-2 data. 

The area on which the methodology was assessed is the Northern Pindos National Park, Greece 
(Sentinel-2 data). Section 2 describes the adopted algorithm. Section 3 demonstrates the results 
obtained using ad-hoc classification algorithms utilizing spectral signatures and abundance 
representations. The conclusions are summarized in Section 4. 

2. Methods 

2.1. Test Area 

The test area is a specified region of the Northern Pindos National Park in north-western 
Greece. This region is the largest protected forestry region in Greece, with high topographical 
diversity. The image has a resolution of 30 m consisting of 333 × 333 pixels. We utilized the image at 
30 m resolution instead of the one at 10 m resolution in order to compare the results obtained by the 
proposed algorithm with the reference classification map provided at 30 m resolution [6]. The image 
depicts the artificial lake of Aoos north-west of Metsovo and a small part of the mountains of Pindos. 
The region is dominated by grassland, prickly oaks and hornbeams, beech, black pine and 
deciduous oak. The verge of the mountain slope is covered by Bosnian pine. Human agricultural 
activities are also present along the water basin. The image is atmospherically corrected and this 
process yielded a reduction of the number of bands from 13 to 10; band 1 (443 nm), band 9 (945 nm) 
and band 10 (1375 nm) were removed. Four basic classes, namely water, dense vegetation, soil and 
sparse vegetation are specified. 

2.2. Adopted Methodology 

The adopted methodology is motivated by the properties of the abundance of ground materials 
present in the pixels of a Sentinel-2 image. Each pixel is represented by a vector of ten spectral bands 
and the original space is reshaped to the dimensionally-reduced space of the abundance. (see Figure 1). 
In addition, since the abundance representation of a pixel unveils sub-pixel level information, this 
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allows the proposed algorithm to identify possible refined structures within each region, which is 
usually not available in ground truth maps. 

 
Figure 1. Spectral bands from the original spectral band space were dimensionally reduced to the 
less correlated abundance space. 

The scope was to employ first endmember extraction (EE) by identifying spectrally homogeneous 
regions (regions of interest, ROIs) and extracting the mean endmembers of the image based on the 
collected ROIs. Secondly, we employed a Spectral Unmixing method that is based on the endmembers 
extracted by EE, in order to produce the abundance fractions for each pixel, which in turn form the 
so-called abundance vector of the pixel. These vectors from all pixels were fed into the classification 
process, which groups pixels according to the abundance representations. 

2.2.1. A. EE 

With the aim of selecting representative endmembers for each class, suitable regions of interest 
(ROIs) were selected. In our experiments we used the four main land cover classes, namely (a) water; 
(b) dense vegetation; (c) soil; and (d) sparse vegetation. All endmembers were calculated as the 
average values of the spectral signatures of the pixels in each ROI. Figure 2 depicts (a) the 
appropriate ROIs selected on the Sentinel-2 image and (b) the endmembers of the four main classes: 
water, dense vegetation, soil, sparse vegetation. 

  
(a) (b) 

Figure 2. (a) Regions Of Interest selection for endmember extraction; (b) endmembers of four classes, 
water, dense vegetation, soil, sparse vegetation. 
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2.2.2. B. SU 

The selection of the appropriate endmembers is crucial in order to correctly estimate the 
abundance fractions. The spectral signature of the pixel, denoted by x, is assumed to follow the 
linear mixing model (LMM). This adopts the hypothesis that the spectrum of a mixed pixel is a linear 
combination of its endmembers’ spectra, as follows: 

nwx   (1) 

where pLpL
p  

 ,],...,,[ 21   is the mixing matrix comprising the endmembers’ spectra in 

its columns (L-dimensional vectors pii ,...,2,1,  ); w is a 1p  vector consisting of the 
corresponding abundance fractions, named abundance vector; and n is an 1L  additive noise 
vector, which is assumed to be a zero-mean Gaussian distributed random vector with independent 
and identically distributed elements. 

The abundance fractions for each pixel should be non-negative and sum to one. The abundance 
vector for each pixel is estimated via a variational Bayes algorithm, called BiICE, which is based on 
an appropriately-defined hierarchical Bayesian model [8]. In algorithmic form, the abundance vector 
can be written as: 

	࢝ =  (࢞,ࢶ)	ܧܥܫ݅ܤ	

BiICE is computationally efficient, provides sparse solutions without requiring the fine-tuning 
of any parameters and converges fast to accurate values even for highly-correlated data. The 
determined abundance vector w is further used for each pixel representation in the classification 
process. The abundance representations resulting from BiICE were then fed into the classification 
process. 

2.2.3. C. Classification 

The classification was carried out in both supervised and unsupervised terms. Sepcifically, for 
the former case the nearest-neighbour classifier (NN) was employed, where every training example 
is stored with its label and a prediction is made for a test example by computing its distance to every 
training example. In addition to NN, SVMs were also utilized since they show, in general, superior 
performance to other classification methods. The advantage of an SVM is that it successfully works 
with a small number of training samples. Finally, for the unsupervised case, a clustering algorithm, 
called the online adaptive possibilistic c-means (OAPCM), is exploited [9]. In OAPCM, pixels are 
processed one-by-one and their impact is memorized to suitably defined parameters. Hence, the 
algorithm is flexible in tracking variations during the clustering formation. OAPCM starts with zero 
clusters and during evolution it creates new clusters or merges existing ones. 

Figure 3 depicts a flowchart of the two case studies: (A) spectral signature classification; and (B) 
abundance representation classification. 

 
Figure 3. Flowchart of the two case studies: (A) spectral signature classification (red line); (B) 
abundance representation classification (blue line). 
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3. Results and Discussion 

Aiming to achieve a quantitative evaluation, the ad-hoc classification approaches proposed in 
the literature, such as the nearest neighbor (NN) classifier, support vector machines (SVMs) and the 
unsupervised OAPCM algorithm, were utilized. The obtained results (classification maps) were 
validated in terms of accuracy based on the obtained confusion matrix, as can be seen in Tables 1 and 
2. In both cases of supervised classification (NN, SVM), the four endmembers extracted in the EE 
process were used to train the classifiers, whereas the remaining pixels were used for validation. It 
should be noted that, in the case where the abundance representations are used as the input for 
classification, spectral unmixing was applied to the four endmembers as well as to the remaining 
pixels. The abundance representations were used to train the classifiers. As a result, classification 
maps were generated, providing information of the area of each land class. The classification 
utilizing the abundance representation (see Figure 3 case study B) achieved an average accuracy that 
was higher than the classification utilizing the spectral signatures (see Figure 3 case study A). The 
water and soil classes were successfully identified by the two case studies, since the average 
classification accuracies were similar. However, the dense vegetation and sparse vegetation classes 
were not successfully identified. The results are shown in Figure 4. 

  
(a) (b) 

   
(b1) (b2) (b3) 

   
(b4) (b5) (b6) 

Figure 4. (a) Band 8 of the Sentinel-2 image; (b) Reference map of four classes: water, vegetation, bare 
soil and soil-vegetation; (b1)–(b3) classification results obtained by Nearest Neighbors (NN), Support 
Vector Machines (SVMs), and Online Adaptive Possibilistic C-Means (OAPCM) for spectral signatures; 
(b4)–(b6) classification results obtained by NN, SVM, and OAPCM for abundance representation. 

Table 1. Comparative results of the classification algorithms in terms of Average Accuracy (AA) for 
spectral signatures. 

 Water  Dense vegetation Bare Soil Sparse Vegetation 
NN 93.49 80.44 86.86 76.26 

SVM 93.16 80.90 87.25 76.77 
OAPCM 94.89 55.25 86.41 65.99 
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Table 2. Comparative results of the classification algorithms in terms of AA for abundance 
representation. 

 Water  Dense Vegetation Bare Soil Sparse Vegetation 
NN 94.68 86.39 87.12 82.04 

SVM 94.90 84.73 88.00 79.41 
OAPCM 96.81 86.20 87.79 80.65 

4. Conclusions 

The objective of this study was to assess the performance of a methodology that was 
successfully applied to hyperspectral Sentinel-2 data when supervised and unsupervised 
classification approaches were employed. The advantage of this methodology is that it integrates the 
abundance representation instead of the basic spectral signature representation of the pixels. The 
abundance representation provides sub-pixel level information and is in principle capable of the 
more accurate mapping of land cover. The adopted methodology was experimentally evaluated on a 
Sentinel-2 image of Northern Pindos National Park (Greece), which comprises water, vegetation 
(dense and sparse) and bare soil areas. The performance of the (two supervised and one 
unsupervised) classification algorithms proposed in the literature utilizing abundance representations 
were compared with the same algorithms utilizing spectral signatures in terms of accuracy. The 
experimental results demonstrate that the proposed algorithm was able to (a) correctly estimate the 
abundance vectors using a sparsity-promoting unmixing scheme that produces the relevant 
abundance maps; and (b) generate more accurate classification maps based on the available 
reference map. 
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