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Abstract: This paper deals with the development of a robust optimal control framework for a 
previously developed multi-body ski jumper simulation model by the authors. This framework is 
used to model uncertainties acting on the jumper during his jump, e.g., wind or mass, to enhance 
the performance, but also to increase the fairness and safety of the competition. For the uncertainty 
modeling the method of generalized polynomial chaos together with the discrete expansion by 
stochastic collocation is applied: This methodology offers a very flexible framework to model 
multiple uncertainties using a small number of required optimizations to calculate an uncertain 
trajectory. The results are then compared to the results of the Latin-Hypercube sampling method to 
show the correctness of the applied methods. Finally, the results are examined with respect to two 
major metrics: First, the influence of the uncertainties on the jumper, his positioning with respect to 
the air, and his maximal achievable flight distance are examined. Then, the results are used in a 
further step to quantify the safety of the jumper. 
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1. Introduction 

In today’s high-performance sports, the competition level increases steadily requiring the 
coaches to instruct their athletes with more sophisticated training methods to help them best their 
opponents. Especially in ski jumping, which is in the scope of this research, the competition level is 
high, while the possibility for mistakes that can be corrected by the athlete is minimal. As additionally 
the chances for training sessions is rather limited, the conduction of simulations becomes of 
paramount importance for the training of the athletes [1]. 

Normally, a simulation can merely provide a reproduction of the already known results with 
some limited possibilities for an influence analysis. Therefore, an increasing interest is shifted in the 
direction of optimal control (OC) of the ski jumper’s posture, because OC provides methods for 
influence quantification. Here, different levels of fidelity are used: A rather low fidelity point-mass 
representation of a ski jumper in the longitudinal plane is looked at in [2]. The authors use an indirect 
optimization method by the Hamiltonian and optimize the flight path to get the maximal jump length 
using different take-off velocities. Study [3] uses a rigid-body representation in the longitudinal plane 
to optimize the jump length. The study sets up a direct OC problem defining a Nonlinear 
Programming Problem (NLP) and solve this numerically. Here, the influence of headwind and 
tailwind on the jumper’s performance is also considered. 

The previous works show that current OC procedures for ski jumping mainly consider simple 
representations of the ski jumper and only a very limited amount of uncertainties, if at all. But, to 
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give the jumper a detailed feedback on his performance and the possibilities to enhance it, a complex 
model as well as the uncertainties acting on him during the jump must be considered. Currently, this 
topic is of growing interest in the ski jumping community. The complex model will be a multi-body 
simulation (MBS) model, developed by the authors in a recent study [4]. The uncertainty modeling is 
based on the method of generalized polynomial chaos (gPC) [5]. gPC provides an analytic 
representation of the uncertainty influence on the optimal trajectory. Thus, it can be calculated a priori 
and can be evaluated on the jumping hill in real time to give the athlete direct feedback on his jump 
and the possibilities to enhance his performance. These results will naturally only be a suboptimal 
representation, which can then be under further examination in an offline optimization. As for the 
OC itself, the paper will use the direct OC formulation and transcribe the problem into a NLP, which 
is solved using the MATLAB-based toolbox FALCON.m [6]. 

The paper is organized as follows: Section 2 introduces the theoretical backgrounds, including 
gPC, the stochastic collocation (SC) method, the modeling, and the OC problem formulation. An 
example is given in Section 3. Finally, conclusive remarks and an outlook are given in Section 4. 

2. Theoretical Background 

This section gives an overview on the theoretical background of this paper and develops the 
framework. Section 2.1 considers the modeling and Section 2.2 the OC formulation. The uncertainty 
framework with gPC and SC is introduced in Sections 2.3 and 2.4 respectively. 

2.1. Modeling 

The model for the OC is based on a MBS representation of a ski jumper presented in [4]. The 
structure of the model that uses a feedforward-feedback nonlinear dynamic inversion (NDI) [7] 
controller as illustrated in Figure 1. Further details on the implementation can be found in [4]. 

 
Figure 1. Structure of feedforward-feedback NDI controller for the MBS ski jumper OC model [4]. 

We use a symmetric four-body representation of the ski jumper (torso, arm, leg, and ski) with 
the generalized coordinates: 

ݍ⃗ = ൤(ݔ
ீ௢஻௢ଵ)ீ
߶஻ଵଵ஻ଵ

ீ(௢஻௢ଵீݖ)
஻ଵଵ஻ଵߠ

஻ଵீߠ
߰஻ଵଵ஻ଵ

஻ସ஻ଵߠ
஻ଵ଻஻ଵଵߠ

߰஻ସ஻ଵ
൨
்

 (1) 

and the generalized velocities: 

ߟ⃗ = ቈ
஻ଵீ(௄ீ௢஻௢ଵݑ)

߶̇஻ଵଵ஻ଵ
஻ଵீ(௄ீ௢஻௢ଵݓ)

஻ଵଵ஻ଵߠ̇
஻ଵ(௄ீ஻ଵݍ)
߰̇஻ଵଵ஻ଵ

஻ସ஻ଵߠ̇
஻ଵ଻஻ଵଵߠ̇

߰̇஻ସ஻ଵ
቉
்

 (2) 



Proceedings 2018, 2, 320 3 of 6 

 

Here, ߶, ,ߠ ߰ are the relative orientation angles (roll, pitch, yaw) between the bodies (ܤ with 
origin ݋ܤ). The local earth frame ܩ is fixed on the take-off table (the x-axis points in hill direction, 
while the z-axis points up). The distances to the table are given by (ீݔ௢஻௢ଵ)ீ and (ீݖ௢஻௢ଵ)ீ  with 
their velocities (ݑ௄ீ௢஻௢ଵ)஻ଵீ  and (ݓ௄ீ௢஻௢ଵ)஻ଵீ  respectively. The derivative of the first body angle is the 
pitch rate (ݍ௄ீ஻ଵ)஻ଵ, while the other body angles are directly differentated with respect to time. 

The initial values are: 
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These values correspond to the initial steady flight condition on Okurayama hill in Sapporo 
given in [3] (ݐ଴ = 0.4	s). Figure 2 illustrates the considered bodies and their movement directions. 

 
Figure 2. MBS model of ski jumper with different bodies and movement directions and rotation axes [4]. 

2.2. Optimal Control 

The trajectory optimization is done by means of direct OC. Therefore, the following OC problem 
is defined [8]: 

min ܬ = ݁൫⃗ݔ, ሬ⃗ݑ , ௙൯ݐ +න ,ݔ⃗)ܮ ሬ⃗ݑ ݐ݀(
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(4) 

In Equation (4), the cost functional is depicted by ܬ, including Mayer term ݁ and Lagrange term 
the equality constraints are ሬ߰⃗ ,ܮ ,	 while the inequality constraints are ܿ⃗. Additionally, the optimized 
trajectory must fulfill the state dynamics ⃗̇ݔ, which are represented by the MBS in this work (Section 
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2.1). These depend on the states ⃗ݔ (containing ⃗ݍ  and ⃗ߟ) and controls ݑሬ⃗  (containing the muscle 
activations ⃗ݍ௠௨௦). The uncertain parameters are depicted by ⃗ߠ. The symbols ݐ଴ and ݐ௙ are the initial 
and final time respectively. 

This continuous, infinite dimensional OC problem is transcribed by a full discretization direct 
OC approach into a NLP [8], which can then be used directly within off-the-shelf NLP solver such as 
IPOpt [9] (tolerances: 10ିହ). This transcription and successive solution is supported by the Matlab-
based toolbox FALCON.m, which was developed at the Institute of Flight System Dynamics of 
Technical University Munich [6]. 

2.3. Generalized Polynomial Chaos 

The gPC method is a spectral representation of the uncertainties in random space [5]: 

,ݔ⃗)ݕ⃗ ሬ⃗ݑ , (ߠ⃗ = ෍ ,ݔ⃗)෠௠ݕ⃗ ሬ⃗ݑ )Φሬሬሬ⃗ ௠൫⃗ߠ൯
ெ

௠ୀ଴

 (5) 

Equation (5) shows the decomposition of the uncertain problem into the uncertain parameters 
that are only related to the orthogonal polynomials Φሬሬሬ⃗  and a deterministic part that is described by 
the expansion coefficients ⃗ݕ෠. 

Here, the orthogonality relation defined for a scalar orthogonal polynomials ߶ is: 

ॱ[߶௡(ߠ)߶௠(ߠ)] = න߶௡(ߠ)߶௠(ߠ)ߠ݀(ߠ)ߩ
ஐ

= ℎ௠ଶ  ௠௡ (6)ߜ

The uncertainty is defined by a probability density function (pdf) ߩ, which is given over the 
uncertainty region Ω [5]. The normalizing constants are defined as ℎ௠ଶ  and create an orthonormal 
polynomial. Orthonormal polynomials will be assumed throughout this work. 

On the other hand, the expansion coefficients are defined by [5]: 
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The expansion coefficients are calculated by the SC approach introduced in the next paragraph. 

2.4. Stochastic Collocation 

The non-intrusive SC approach is used to calculate the gPC expansion coefficients. This method 
allows the sampling at deterministic nodes, as it uses a Gaussian quadrature rule to approximate the 
integral of Equation 7. The quadrature is based on the pdf of the uncertainty [5]: 

,ݔ⃗)෠௠ݕ⃗ ሬ⃗ݑ ) =෍⃗ݕ൫⃗ݔ, ሬ⃗ݑ , ൯Φሬሬሬ⃗(௝)ߠ⃗ ௠൫⃗ߠ(௝)൯⃗ߙ(௝)
ொ

௝ୀଵ

 (8) 

In Equation (8), ⃗ߠ(௝)  and ⃗ߙ(௝)  are a set of Gaussian quadrature nodes and weights. The 
deterministic OC problem will be directly solved at these nodes, which allows a deterministic 
sampling. 

3. Illustrative Example 

This section introduces an illustrative example for the OC of the ski jumper considering 
uncertainties. We here use a normal distributed mass ݉  with a mean of ܧ[݉] = 70	kg  and a 
standard deviation of ߪ[݉] = 1	kg. Figure 3a shows the optimized trajectory with the corresponding 
uncertainty bars around the mean value (solid red). We can observe that the change in mass 
significantly influences the jump length: For instance, we have a standard deviation of approximately 
0.8	݉  in ݔ  direction and 0.4	݉  in ݖ  direction, which translates into a jump length change of 
approximately 0.9	݉. Thus, a small weight change contributes to a rather significant change in the 
jumping length. Consequently, this makes up for a major influence in the safety of the athlete. On the 
other hand, Figure 3b depicts the comparison between gPC and Latin-Hypercube sampling (LHS) 
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over a non-dimensional time ߬. We can see that we get an accurate result from the gPC with only five 
samples compared to the LHS with 2000 samples. Thus, gPC shows both accuracy and efficiency. 

 
(a) (b) 

Figure 3. Optimized trajectory with uncertainty bars (a) and absolute error between gPC solution and 
LHS over non-dimensional time for position (b) on Okurayama hill. 

Now, Figure 4 depicts the development of the upper body angle and rate over the mean time. 
We can observe that the upper body angle (solid red) is not largely influenced by the uncertain mass, 
while the angular rate is quite largely influence by the uncertain mass. This yields the conclusion that 
the optimal posture of the upper body is independent of a varying mass. Therefore, the athlete needs 
to adapt differently with changing mass to uphold this optimal posture. Such results can be used to 
improve the performance of the athlete. 

 

Figure 4. Upper body angle and rate with uncertainty interval over mean jump time. 

Overall, Figures 3 and 4 show accordance with the results presented in [3]. 

4. Conclusions and Perspective 

This paper presented the OC under uncertainties of a MBS ski jumper model. The ski jumper 
was modeled using the constrained Newton-Euler equations combined with a NDI control law that 
shaped the movement of the jumper’s extremities to be physical. The framework used the Matlab-
based OC toolbox FALCON.m combined with the gPC method for the quantification of the influences 
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of uncertainties. By this, optimal trajectories could be generated that are stochastic, i.e., are defined 
by a mean and a standard deviation. This makes it to possible to get an insight into the jumper’s 
movement, e.g., when subject to a varying mass. 

This can help athletes to adapt their flight style under different competitive conditions. 
Additionally, it can be used to show competition organizers, if the competition is still safe and fair. 
This can lead to a definition of the wind corridors and minimal mass, such that the maximal 
achievable jump length is still within the safe landing area. The results can also be used to define a 
suitable point metric for the evaluation of the jump in the sense of what could have been possible 
compared to what the jumper achieved. These evaluations can be carried out fast by the gPC 
expansion in a suboptimal way. Overall, the results can be used in the future to increase the fairness 
and safety in ski jumping competitions. 

Although the presented results have already shown to be valid by comparing them to published 
results, they can still be enhanced by more sophisticated models. Additionally, more modeling 
techniques for uncertainty quantification such as chance constraints or bi-level OC should be 
considered. 

Supplementary Materials: FALCON.m is available from www.falcon-m.com. 
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