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Abstract: Swim race analysis systems often rely on manual digitization of recorded videos to obtain 
performance related metrics such as stroke-rate, stroke-length or swim velocity. Using image-
processing algorithms, a stroke tagging system has been developed that can be used in competitive 
swimming environments. Test images from video footage of a women’s 200 m medley race recorded 
at the 2012 Olympic Games, was segmented into regions of interest (ROI) consisting of individual 
lanes. Analysis of ROI indicated that the red component of the RGB color map corresponded well 
with the splash generated by the swimmer. Detected red values from the splash were filtered and a 
sine-fitting function applied; the frequency of which was used to estimate stroke-rate. Results were 
compared to manually identified parameters and demonstrated excellent agreement for all four 
disciplines. Future developments will look to improve the accuracy of the identification of swimmer 
position allowing swim velocity to be calculated.  
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1. Introduction 

Analysis of competitive swimming races provides much sought after data on the performance 
of athletes and their competitors. Performance parameters such as stroke-rate, stroke-length and 
swim velocity provide coaches with quantitative information allowing further discussion on  
the swimmer’s strengths and weaknesses, effect of training implementations or success of race 
strategies [1]. Many elite swimming teams have dedicated sports analysts who film the races and 
later digitize to extract the required performance parameters. Filming positions are usually in the 
spectator stands, capturing an above-water view of the race [2]. Typically, the race analysis will be 
broken down into phases: start, turns, finish and clean swimming in between. The clean swimming 
phase is often the focus for performance parameters as the speed or time taken during the phase has 
been shown to have the highest correlation with overall race time [3].  

Digistisation is required to extract performance parameters from video footage. This can be done 
manually using ‘tagging’ systems; however, these methods can be time consuming and subject to 
user error. Digital image processing techniques can be used to automate the process, although,  
to date no fully automated swimming competition analysis system has been published.  
Pogalin et al. [4] developed an automated video-based system to measure swimmer lap times in 
training but it was not applicable to competition environments due to the number and positions of 
cameras required. Automated video-based systems have also been developed for drowning 
prevention applications using a variety of image processing techniques such as block-based models 
for background and foreground objects [5], Kalman filters [6] and classification of the temporal 
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variation in a pixel’s color [7]. These techniques have potential to be used to track swimmers in 
competitive race environments but the complexity may lead to difficulties in implementation and 
long execution times to run.  

Collection of performance parameters during training rather than competition allows the use of 
alternative measurement techniques such as wireless accelerometers or inertial sensors [8–10]. These 
systems offer real-time feedback and valuable velocity data of the swimmers, but unfortunately are 
not able to be used in competitive environments. 

The aim of this research was to develop an automated stroke-rate detection system for use in 
competitive swimming environments. The system was required to work for all four swim disciplines: 
breaststroke, butterfly, backstroke and freestyle, using a single camera mounted in the spectator 
stands.  

2. Method 

2.1. Equipment and Data Collection 

Video footage was collected (with permission from British Swimming) at the 2012 Olympic 
Games using a Sony HDR-PJ260VE camera (1920 × 1080 pixels, 50 Hz, progressive scan). The camera 
was mounted at the highest point in the temporary seating stand of the London Aquatics Centre. The 
optical axis was approximately perpendicular to the swimming direction, 25 m along the long axis of 
the pool (Figure 1). The .MTS video files were converted to .PNG images using Avisynth and 
VirtualDub. MATLAB® (2012a), image processing and statistics toolboxes were used for the analysis. 
Footage of a women’s 200 m medley race was used for algorithm development and validation of the 
proposed system. 

2.2. Image Processing Algorithm 

This section reports the image processing algorithm that was used to obtain the signal relating 
to the approximate position of the swimmer. The first stage of the algorithm was to segment the pool 
into regions of interest (ROI) consisting of individual lanes. This allowed either analysis of a single 
lane for computational efficiency, or the potential for multi-lane analysis. Further processes were then 
applied to identify the position of a swimmer along a lane. Analysis of the RGB color map used by 
MATLAB® indicated that tracking the splash leading or trailing a swimmer was more reliable than 
attempting to identify the body of a swimmer. As such, the resulting signal relates only to the 
approximate location of the swimmer. A description of the processes used is outlined below. For this, 
and subsequent stages, a background image was required; this was an image of the pool in which no 
swimmers were in the water, the lane rope markers were undisturbed and the camera was located in 
the same position as used for race capture (Figure 1). 

 
Figure 1. Camera view of the pool with no swimmers in the water and lane rope markers undisturbed 
(background image).  
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2.2.1. Stage 1: Lane Segmentation 

Aim: Generate image coordinates of ROI relating to lane rope boundaries. 
Method: The background image was masked and cropped to a trapezoid boundary defined by the 
corners of the swimming pool (manually identified by user). A perspective transform was applied to 
create an image of the pool in which the swimming lanes ran parallel to the horizontal and were 
equally spaced vertically. The number and width of the lanes were used to generate a coordinate 
matrix defining 11 horizontal points along the length of each lane. A reverse transformation was 
applied to convert the coordinate matrix back to the original image coordinate system. Polynomial 
lines were formed from the 11 evenly spaced points, defining the lane ropes; thus segmenting the 
pool into ROIs. Segmentation of the pool into ROI reduced the computational processes required to 
analyze a single swimmer (hence single lane and just one ROI) and provided the potential for multi-
lane/swimmer analysis.  

2.2.2. Stage 2: Swimmer Identification 

Aim: Provide an approximate location of the swimmer in the ROI and return a signal from which 
stroke parameters can be identified.  
Method: An image (1080 × 1920 array, three 8-bit pixels in the RGB color space) containing a swimmer 
during the butterfly stroke (at time of arms entering the water) was used for the initial algorithm 
development. This image was chosen as it contained both a splash event and the swimmer was visible 
out of the water. The RGB components of the image were viewed and results indicated that the water 
was predominately formed of the blue and green components. The red component (RGBr) formed a 
low percentage of the water composition, but increased in intensity around the swimmer, most 
notably in the region of splash at the feet and arms of the swimmer where the water appeared white 
instead of blue (Figure 2). No advantage in identifying the swimmer (or splash) location was seen by 
converting the image into alternative color spaces (e.g., HSV or L*a*b) and as such, RGBr was selected 
for further analysis. 

 
Figure 2. Top: RGB profile along the center of lane 1. 

To reduce computation time, RGBr values along profile lines were analyzed rather than the 
complete intensity array from the whole ROI. Five profile lines were defined that ran parallel to the 
lane boundaries identified in stage 1. The lines were equally spaced about the center of the ROI, with 
a larger spacing at each lane rope to account for interference from lane rope markers or splash from 
adjacent swimmers. For the images used in this analysis, the profile lines had a spacing of four pixels 
(1/8th of the ROI). The RGBr values along the five profile lines were obtained for each image from the 
video as well as the background image. The background image RGBr values were subtracted to 
reduce the influence of consistent noise such as reflections or permanent objects in the water.  

Visually, a distinct peak of increased RGBr values was seen around the region of splash, but due 
to the unstable water surface, the signal contained a high level of noise that triggered false positives. 
A filtering stage was used to improve the likelihood of correct detection. The values from all five 
profile lines were sorted into ascending order and a threshold value was assigned at the 98th 
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percentile. Each profile line was filtered and RGBr values below the threshold were set to zero. The 
mean of the filtered profile lines was calculated and the values sorted into ascending order. The 50th 
percentile was selected as a second threshold. Further filtering with the second threshold returned a 
group of values along the profile line, the position of which corresponded to the start and end of the 
splash. The position of both the first and last values from the filtered group were important due to 
the change in direction of the swimmer at each lap. Swimming left to right (with respect to camera 
view), the last value detected was the most reliable signal (relating to splash from arms) with the first 
value detected (foot splash) showing high variations in location. When the swimmer changed 
direction (right to left), the first value became the leading splash (from arms) and the more stable 
signal for tracking. The signal exported for further analysis contained three values: (1) pixel position 
along ROI relating to the first detected value and (2) last detected value; and (3) the magnitude of the 
RGBr value. 

2.3. Signal Processing 

The second phase of the developed system was to use the signal generated from the image 
processing algorithm to obtain stroke parameters. The chosen parameter for validation was the stroke 
duration: the time from the start of one stroke cycle to the start of the next i.e., hand entry to hand 
entry (butterfly), right/left hand entry to right/left hand entry (backstroke and freestyle) or head 
breakout to head breakout (breaststroke).  

2.3.1. Stage 3: Lap Segmentation 

Aim: Identify video frame number corresponding to the start and end of each lap. 
Method: The change in gradient on the plot of detected pixel position against frame number was 
used to segment the race into lanes. The difference between consecutive values of pixel position were 
calculated and filtered using a Boolean statement with the 90th percentile used as the threshold. The 
running mean of 100 consecutive values was then calculated and when the mean value was below 
0.01, this identified the start of the lap; when the mean value rose above 0.01, this signaled the end of 
a lap. For the 200 m medley race, the signal was divided using this method into four data sets relating 
to each swim discipline.  

2.3.2. Stage 4: Identification of Stroke Parameters 

Aim: Calculation of mean stroke duration for each lap of the race. 
Method: For the butterfly, backstroke and freestyle disciplines (lap 1, 2 and 4 respectively) the 
following signal processing steps were applied: 

1. The raw pixel positions from stage 4 were filtered to remove values that may lead to false stroke 
identification: 

a. A linear polynomial regression line was calculated; 
b. If the pixel position was greater than the set threshold (default = 100) it was replaced with 

the value from the regression line; 
c. The filtered data was smoothed using a five-point moving average filter; 

2. A five-step central differencing method was used to calculate the pseudo velocity of the swimmer;  
3. The velocity signal was smoothed using a five-point moving average filter; 
4. A sum of sine curve was fitted to the smoothed velocity signal (Figure 3);  
5. The maxima of the sine curve signal were identified using the peakfinder function [11] and the 

corresponding frame numbers returned; 
6. The difference between each maxima were calculated and the mean value obtained for each lap. 

A different approach was used for the breaststroke disciple; the long glide phase followed by a 
sudden splash as the arms and head break out from the water gave greater periodicity in the intensity 
of the splash than the pseudo velocity profile. The magnitude of the RGBr value was instead used as 
the signal. This was filtered using a five-point moving average and a sum of sine curve was fitted. 
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Again, the maxima of the sine curve were identified and the mean of the difference calculated to 
obtain the stroke duration. 

 
Figure 3. Pseudo velocity signal for butterfly (―). Stroke-rate detected using a sine-fit function (―). 

3. Validation 

This section outlines a practical example of the system used to analyze a women’s 200 m medley 
race. The results were validated by comparison to manual identification of strokes based on the 
notational analysis method used by performance analysts (Table 1). Only the clean swim phase of 
each lap was considered.  

Table 1. Comparison between manual and ‘automated’ stroke rate parameters (mean and standard 
deviation of stroke duration, number of strokes counted and corresponding stroke-rate).  

Discipline Manual Analysis Developed System

Butterfly 
1.25 ± 0.09 s 1.23 ± 0.09 s 

N = 14 N = 15 
48 stroke·min−1 49 stroke·min−1 

Backstroke * 
1.50 ± 0.09 s 1.50 ± 0.01 s 

N = 28 N = 28 
40 stroke·min−1 40 stroke·min−1 

Breaststroke 
1.49 ± 0.05 s 1.50 ± 0.01 s 

N = 14 N = 14 
40 stroke·min−1 40 stroke·min−1 

Freestyle * 
1.41 ± 0.04 s 1.42 ± 0.01 s 

N = 19 N = 21 
43 stroke·min−1 42 stroke·min−1 

* Half strokes were detected and values multiplied by two to give full stroke information. N = number 
of strokes. 

A maximum difference of 0.02 s (one frame at 50 fps) was observed between the manual 
digitization method and the developed system. An accuracy of ±1 frame was considered to 
demonstrate excellent agreement between the two measures (no significance in t-test). For the 
freestyle lap, the developed system was not able to detect two strokes; it is likely these occurred near 
the turn or finish of the race. The developed system for the butterfly lap detected an additional stroke. 
This is thought to be an artifact of applying the sine-fitting function. 

4. Conclusions 

The proposed system used a single camera that was positioned in the spectator stands. The 
system consisted of two developed processing algorithms for the image and signal. The RGB values 
along the profile lines were obtained. RGBr values were filtered and taken forward to the signal 
processing stage of the system. From the approximated swimmer position, a five-step central 
differencing method was used to calculate the pseudo velocity of the swimmer. In future 
developments of the system, it would be interesting to compare the obtained velocity profile with 
data from wireless inertial sensors. The velocity profile obtained was periodic and clear peaks were 
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observed that correlated with the individual swimming strokes. A sine-fitting function was used to 
quantify the location of the peaks, from which the frequency was used to define stroke-duration and 
thus, stroke-rate.  

The following limitations of the system were noted: 

• Taking the mean of the stroke-rate and duration during the clean swimming phase prevents the 
ability to detect changes in stroke parameters during the lap. 

• Changes in the background have not be modelled; instead careful positioning of the profile lines 
to avoid problematic regions such as lane rope markers was used. This would therefore not be 
appropriate to track swimmers adjacent to the lane ropes.  

• The current system is not suitable for near real-time analysis; this could be improved by using 
alternative programming environments. 

• The robustness of the system has not been fully tested. A 200 m women’s medley race was used 
for development. It is not known whether this system would be able to detect faster rate events 
such as the men’s 50 m freestyle or longer distance events such as 200 m breaststroke or 1500 m 
freestyle. These events are likely to generate the extremes of splash.  

The developed system was able to detect periodic motion from a single camera view of a 
swimming pool. It is thought that the algorithms developed have the potential to be used to detect 
performance parameters from other periodic sports such as cycling or rowing.  
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