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Abstract: Many cyclists use online-maps for planning their routes, however, only little information 
is known about the road surface of different cycling paths, farm or public roads. Cyclists prefer road 
surfaces fitting the type of bike they are using for a specific ride (e.g., time trial, road, MTB, 
cyclocross, gravel bike). Often riders upload their ride data including GPS, heart rate (HR) or power 
(P) on platforms like Strava or Garmin Connect. In this research we tried to evaluate whether it is 
possible to (1) evaluate the road surface quality using a 3D accelerometer mounted on the bicycle’s 
fork (f = 500 Hz) and whether (2) results of similar quality can be achieved using the accelerometer 
of a smartphone (f = 100 Hz) placed in the cyclist’s pocket. For data acquisition a cyclist rode on a 
cyclocross bicycle on three different road surfaces (cobblestones, gravel and tarmac) with three 
different speeds (10, 20 and 30 km/h) and three different tire pressures (3, 4 and 5 bar). Data of both 
measuring systems were analyzed using machine learning algorithms. Results showed that road 
surfaces could be predicted with more than 99% accuracy with the accelerometer and with more 
than 97% with the smartphone-data. 
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1. Introduction 

The popularity of cycling has increased within the last decades, whereas the bicycle is now the 
first choice as a means of transportation in many countries worldwide due to its practical application, 
efficiency, low costs and related health benefits [1]. Along with its increasing demand, a necessity for 
planning and constructing safe bicycle paths has arisen. As it is a quite costly process, cyclists’ route 
choices have often been surveyed in order to obtain reliable data which would favor the cyclists’ 
needs and demands. Among the demands, comfort seems to be highly desired when choosing a  
path [2].  

It has further been agreed that factors such as environmental, mechanical, biomechanical and 
physiological influences all impact the level of cycling comfort [3]. Of these, environmental factors 
such as traffic, lane width and geometry along with the surroundings have shown to significantly 
affect cyclists’ assessment of the bicycle path comfort [4]. Different road surfaces affect cyclists’ 
perception of comfort differently, whereas smoother surfaces are generally preferred yielding 
optimal comfortable features for riding and thereby requiring lower energy output. Oppositely, 
rougher road types that are less comfortable and harder to ride have shown to discourage certain 
cyclists from riding upon such surfaces [2,5,6]. 
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Therefore, research has lately been concentrated around bicycle comfort, for which has been 
widely regarded as one of the most important aspects, commonly investigated through various 
vibration tests [1]. It has further been found that of the common types of road surfaces, tarmac 
exhibits the highest level of comfort, while also it decreases with increasing velocity [5]. Giubilato 
and Petrone [7] studied the vibration response to road surface, while they also showed that the level 
of comfort for different wheels varies with the road surface and speed.  

However, regarding cycling as a sport the demands of athletes on road surface type and quality 
differ from those of commuters and leisure-time cyclists. Many athletes want to ride certain surface 
types (e.g., off-road, gravel-roads, tarmac) depending on the type of bike they are using. They would 
go for smooth tarmac if riding a time trial bicycle, for gravel roads with their gravel or cyclocross-
bikes and off-road with mountain-bikes. Many of these cyclists use online route-planning for longer 
rides. However, most of the websites (cf. www.strava.com) use popularity of routes for planning by 
collecting the smartphone or GPS-device data of uploaded rides, but do not give any information on 
road surface type or quality. Hence adding information about road type and quality could improve 
individualized routing options for cyclists planning their ride.  

In this research we tried to evaluate whether it is possible to (1) evaluate the road surface quality 
using a 3D accelerometer mounted on the bicycle’s fork and whether (2) results of similar quality can 
be achieved using the accelerometer of a smartphone placed in the cyclist’s pocket. 

2. Materials and Methods 

Figure 1 shows the measurement setup of the bicycle, where a Merida 500 cyclocross bicycle of 
frame size 52 cm was used (measurement setup and trials conducted are described in more detail in 
the work of Christensen [8]). A tri-axial capacitance accelerometer (MMA7260Q, Freescale 
Semiconductor, Austin, TX, USA) was securely strapped to the front fork of the bicycle (Figure 1). 
For data storage a data-logger (Logomatic v2, SparkFun Electronics, Boulder, CO, USA) was used 
with a sensitivity of 200 mV/g, acceleration range ± 6.0 g and sampling with a frequency of 500 Hz. 
The attached accelerometer was mounted in a tilted orientation determined to be 18.66° from vertical. 

 
Figure 1. Merida 500 cyclocross bicycle equipped with accelerometer, data logger and speedometer.  

Furthermore, a Samsung Galaxy S4 mini Smartphone (Samsung, Daegu, KOR), running 
Android 6.0 (Google LLC, Mountain View, CA, USA), was placed in the back pocket of the test 
subject’s pants while conducting the test trials. The smartphone was recording data through the 
application Physics Toolbox Sensor Suite (Vieyra Software, Washington, DC, USA) and sampling 
with a frequency of 100 Hz.  

All measurements were conducted the same day, where the following surfaces were tested: 
cobblestones, gravel, and tarmac (Figure 2). The surfaces generally showed similarity in structure 
and condition, where straight and flat sections of approximately 100 m were selected for testing. Each 
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surface, three different speeds (10, 20, 30 km/h) and three tire pressures (3, 4, 5 bar) were tested 
resulting in nine trials per surface. 

 
Figure 2. From left to right tested road surface sections all located in Vienna, AUT: Cobblestones 
(48°15′31.8′′ N 16°21′50.5′′ E), gravel (48°15′26.0′′ N 16°22′37.5′′ E) and tarmac (48°15′21.1′′ N 
16°22′46.3′′ E).  

Data files from the data-logging device were exported as .txt files, while recordings from the 
smartphone were exported as .csv files. Data was processed in Matlab 2017b (The MathWorks Inc., 
Natick, MA, USA). Data were trimmed to contain the vibrational test trials only and an offset 
correction for all channels was conducted thus resulting in acceleration values oscillating around 
zero. The acceleration signals were then divided into time windows containing one or two seconds 
of the data acquired, respectively.  

From the time windows applied, a total of 16 features for each channel (ax, ay, az and ares) was 
extracted resulting in a total of 64 features. These features of the acceleration signal were: mean  
(a-mean), maximum (a-max), minimum (a-min), mean peak distance (mean-peakdist), mean peak 
amplitude (mean-peaks), median frequency of the fast Fourier transformed (fft)-signal (median-fft), 
frequency of the maximum fft-signal power (max-fft-loc), frequency of the minimum fft-signal power 
(min-fft-loc), maximum fft-signal power (max-fft-pk), minimum fft-signal power (max-fft-pk), mean 
positive gradient (mean-grad-pos), mean negative gradient (mean-grad-neg), maximum positive 
gradient (max-grad-pos), minimum positive gradient (min-grad-pos), maximum negative gradient 
(max-grad-neg), and minimum negative gradient (min-grad-neg).  

Additionally two different classification parameters were added to the feature list. Firstly 27 
unique classifiers including surface, tire pressure and riding velocity, secondly only three unique 
classifiers consisting of the three surfaces examined.  

After having prepared the data in the fashion mentioned above, machine learning algorithms 
(MLA) were applied onto the datasets. A classification learner routine was conducted with the two 
different classifiers and all features. This was done for the features extracted from both the one and 
two second windows for acceleration sensor as well as phone data. Firstly the 27 unique classifiers, 
secondly only three classifiers were applied using a total of 22 different machine learning algorithms 
from the categories decision tree, linear and quadratic discriminant, support vector machine (SVM) 
and k nearest neighbor (kNN). For validation a 5-fold cross validation was used, the algorithm 
showing the best prediction accuracy was chosen and confusion matrices plotted. 

Furthermore the number of features was reduced and the most successful MLA was performed 
again to evaluate whether a result of similar accuracy could be achieved with fewer features. 

3. Results 

The results of the machine learning algorithms applied to the data showed distinctive differences 
depending on the sensor, the size of the time window and the number of classifiers used for the 
classification learner (Table 1). 
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Table 1. Classification learner results for different datasets, window-sizes (ws), unique classifiers 
(class) and number of features (feat). MLA is the name of the most accurate machine learning 
algorithm (MLA) along with its prediction accuracy in percent (acc). The datasets differ in used sensor 
(a-sensor and phone) and size of the time windows (WS: 1 s or 2 s). 

Dataset WS (s) Feat Class MLA ACC (%) 
a-sensor 1 64 27 Ensemble—boosted trees 97.9 
phone 1 64 27 Linear Discriminant 45.2 

a-sensor 2 64 27 Ensemble—boosted trees 95.4 
phone 2 64 27 Ensemble—boosted trees 48.4 

a-sensor 1 64 3 SVM—Quadratic 99.1 
    SVM—Medium Gaussian 99.1 

phone 1 64 3 Ensemble—bagged trees 95.5 
a-sensor 2 64 3 SVM—Quadratic 99.2 

    SVM—Cubic 99.2 
    Ensemble—subspace discriminant 99.2 

Phone 2 64 3 SVM—Cubic 97.7 
As expected, a finer classification (i.e., using 27 unique classifiers) resulted in less accuracy of 

the model than using only 3 unique classifiers. Whereas for the acceleration sensor data for both 
number of classifiers high prediction accuracy could be reached (27 classifiers: >95%, 3 classifiers: 
>99%), for phone data 27 classifiers yielded accuracy less than 50%. The results for classification with 
only three classifiers yielded more than 97% of prediction accuracy. Furthermore, it could be noted, 
that window-sizes of 1 s mostly resulted in less accuracy than larger window-sizes of 2 s.  

However, when closer inspecting the confusion matrix for phone data for 27 classifiers, it was 
observed that although many predictions were not correct they were mainly confused between 
different speeds and pressure settings but the surface type itself was still correctly classified  
(Figure 3b) which is highlighted by the red squares.  

For a-sensor data only few observations were classified incorrectly (Figure 3a). Figure 4 shows 
the resulting confusion matrices when only 3 classifiers (cobblestones, gravel, tarmac) were used. For 
both sensor systems (a-sensor: Figure 4a and phone: Figure 4b) only few predictions were incorrect. 
It was interesting to observe, however, that a feature reduction nearly always immediately resulted 
in a decrease of prediction accuracy. 

 

 

(a) (b) 

Figure 3. Confusion matrices for 27 classifiers and 64 features extracted from windows of 1 second 
with the best performing MLA. Small squares filled green: correct prediction, red: incorrect 
prediction. (a) Acceleration sensor (MLA: Ensemble—boosted trees, total prediction accuracy: 97.9%); 
(b) phone sensor (MLA: Linear discriminant, total prediction accuracy: 45.2%), the red quadratic 
frames in (b) indicate the three classifiers cobblestones, gravel and tarmac. Abbreviations on the axes 
refer to the different datasets where cobb, grav and tarm stand for the three different surfaces and the 
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three-digit-number for tire pressure and velocity (e.g.,: a-cobb-420 represents cobblestones, 4 bar tire 
pressure, and a velocity of 20 km/h).  

 

 

(a) (b) 

Figure 4. Confusion matrices for three classifiers and 64 features using a window-size of 2 s and the 
best performing MLA. (a) a-sensor (MLA: SVM quadratic, total prediction accuracy: 99.2%); (b) phone 
sensor (MLA: SVM cubic, total prediction accuracy: 97.7%). Abbreviations on the axes stand for 
cobblestones (cobb), gravel (grav), and tarmac (tarm). 

4. Discussion 

The main purpose of this study was to determine whether road surface quality could be 
quantified and therefore the type of road surface identified by using algorithm parameters that are 
applied momentarily. We wanted to (1) evaluate the road surface quality using a 3D accelerometer 
and find out whether (2) results of similar quality can be achieved using the acceleration sensor of a 
smartphone placed in the cyclist’s pocket.  

For this purpose data were collected on different surfaces, with different speeds, and tire 
pressures. They were analyzed ex-post using machine learning algorithms, with either 27 classifiers 
(3 surfaces, 3 speeds, 3 tire pressures), or three classifiers (3 surfaces). A total of 64 features for 
different time-windows were extracted from the data and used for classification learning. Results 
showed that when 27 classifiers and a time-window of one second are used it was possible to correctly 
identify more than 97% of the data with the acceleration sensor, but less than 50% with the phone. In 
case only three classifiers are used more than 97% can be correctly identified with both systems  
(a-sensor: 99.2%, phone: 97.7%).  

It is concluded that road surface (cobblestones, gravel, tarmac) can be predicted with high 
accuracy when using an acceleration sensor mounted on the fork with a recording frequency of  
500 Hz (up to 99.2% correctly classified) and that furthermore even different speeds and tire pressures 
along with surface can be classified correctly (up to 97.9%, cf. Figure 3a). Using the smartphone 
sensor’s data accuracy for 27 classifiers was less successful resulting only in 48.2% of correctly 
classified data. However, it has to be noted that the surface still could be identified correctly and 
mostly different riding speeds and tire pressures were confused (cf. Figure 3b), these results are also 
supported by the confusion matrix for 3 classifiers (Figure 4b) where a total of 97.7% could be 
classified correctly as being cobblestones, gravel or tarmac.  

From these results it can be concluded that given the data collected and analyzed so far it is 
possible to identify the surface correctly with data from a smartphone worn in a cyclist’s pocket. It 
has to be pointed out, however, that this study has only limited explanatory power given the low 
number of observations. Future research should include more bicycle types (e.g., road, mountain) 
and different placements of the smartphone in the cyclist’s pocket (e.g., front pocket, cycling jersey’s 
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back-pocket, backpack). Whether it will be possible to quantify different quality grades for one 
surface needs to be examined in further trials. 
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