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Abstract: Designing energy-efficient electric motor is a task where multiple goals have to be 
achieved at once. To find the best design possible, different approaches have been developed. In 
part one of this multipart paper, the characteristics of the design optimization problem and methods 
to solve them have been presented. Part two will deal with the different types of model descriptions 
and how the fundamental workflows look like. The third and last paper will evaluate the findings 
concerning the solution methods of the design optimization problem of electric motors. As a 
consequence, requirements for a new improved optimization method are deduced and presented. 
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1. Introduction 

To design electric motors, various variables and different requirements have to be dealt with. 
Recent methods to solve this problem efficiently treat the design optimization problem of electric 
motors as a mathematical problem. The characteristics of these optimization problems were 
presented in detail in part one as well as deterministic and stochastic methods. In order to evaluate 
solutions to the design optimization problem properly, models describing real-world problems and 
making it accessible for the solution methods, are equally important. 

The main part of this paper is dedicated to a thorough literature survey to identify what model 
descriptions are used and how the resulting fundamental workflows of solving the design 
optimization problem look like. The last section of this paper is used for a summary of the findings. 

2. Models and Recent Design Optimization Methods 

Models are used to transform real-world problems into mathematical representations. Together 
with methods to solve optimization problems, distinct workflows for the design optimization 
problem of electric motor arise. In the following sections the various approaches are presented in 
detail. They are categorized according to the optimization methods and model descriptions used. 
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2.1. Deterministic Methods with Physical Models 

Describing the physics of electric motors, Maxwell’s equations are crucial. There are two basic 
approaches to solve them. Analytic approaches derive closed solutions of the magnetic flux density 
distribution. Despite the rather low computation time, idealizations are necessary. Another approach 
is finite element analysis (FEA). The magnetic flux density distribution can be modelled more 
accurately but leads to higher computation times. Detailed information can be found in [1,2]. 

A literature survey reveals basic information regarding the solution process of optimization 
problems with physical models [3–5]. The fundamental working steps are depicted in Figure 1. 

 

Figure 1. Deterministic method with physical model. Distinct properties are numbered and detailed. 

(1) The most influential step is the definition of the target and design variables as well as the 
boundary conditions by the user. The number of target variables affects the solution algorithm used. 
Higher numbers of boundary conditions complicate the solution process since the design space gets 
increasingly restricted. But most important is the number of design variables. They have to be chosen 
sufficiently high to get an optimal solution, but increasing complexity has to be considered as well. 

(2) Modelling the electric motor is the crucial task since the accuracy and the computational 
speed will be defined. Analytic models offer the possibility of fast computation times, but 
simplifications are unavoidable, in-depth expert knowledge is required and the models are very 
specific to the type of electric motor. A more flexible approach can be achieved using FEA, since no 
simplifications are necessary. The accuracy is high but the drawback are higher computation times. 

(3) The objective function has to be computed in dependence of the design variables, the model 
of the electric motor and the boundary conditions. Subject to the target variables, the objective 
functions can be trivial to compute or more elaborate calculations have to be performed. 

(4) Gradient-free algorithms are used, like pattern search, which try to find the solution by 
performing a systematic search. Another method is sequential quadratic programming. Here, a 
quadratic subproblem is constructed, which can easily be solved. Generally, the choice of the 
algorithm is highly dependent on the model description and the number of design variables. 

2.2. Deterministic Methods with Surrogate Models 

Surrogate models approximate the physical behavior. To determine the approximation function, 
the error between measured or simulated test data and the surrogate model is minimized. The most 
popular approach to surrogate modelling is response surface methodology. Since the area of 
approximation is typically rather small, simple polynomial functions can be used [6]. Another 
approach is to use a sum of radial functions with different basis functions and center points [7]. 

A literature review considering optimization problems with surrogate models yield some 
general information [8–10]. The workflow of determining the solution can be illustrated as in Figure 
2. 

 

Figure 2. Deterministic method with surrogate model. Distinct properties are numbered and detailed. 
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(1) The design variables are not arbitrarily chosen by the user. Instead, a screening process is 
conducted in dependence of the target variables, the boundary conditions and the type of surrogate 
model. Using a design of experiment (DOE) the statistically relevant variables are identified. 
Typically, no more than three to six design variables appear statistically significant. 

(2) In the actual optimization loop, the surrogate model has to be computed. To determine the 
approximation function, a DOE has to be performed. Usually FEA is used to compute the true 
responses at the design points due to its accuracy and usability. Since the surrogate model gives only 
reasonable values in the observed design space, in each iteration the surrogate model is recomputed. 

(3) To determine the optima, literature suggests that often window-zoom-in methods are 
employed. Starting with a broad design space and a rough estimation of the objective functions, the 
design space is then decreased and shifted to the assumed optimal design variables. Consequently, 
more exact surrogate models can be defined, allowing the optimal design variables to be calculated. 

2.3. Stochastic Methods with Physical Models 

The general workflow of the optimization with stochastic methods and physical models of 
electric motors is identified as a result of a literature study and depicted in Figure 3 [11–13]. 

 

Figure 3. Stochastic method with physical model. Distinct properties are numbered and detailed. 

(1) In the initial phase of the optimization process, the initial group has to be created either using 
expert knowledge or randomly with respect to the boundary conditions. In subsequent optimization 
steps, the next generation’s group is altered based on information gathered in the current one. 

(2) Since stochastic methods do not use gradient information, only the value of the objective 
functions has to be calculated for each member. The size of the group has to be defined with respect 
to the number of design variables, the computational resources and the model description. 

(3) Termination criteria are necessary for stochastic methods, since they will never reach the 
optimum exactly. An optimality termination criterion is typically the change in objective function of 
the best member. If the change is below a certain threshold, the optimization is assumed to have 
converged. Otherwise, usually a fixed number of iterations is used to abort the optimization process. 

(4) Depending on their value of the objective function, the members are more or less likely to 
influence the upcoming generation. In addition, probabilistic noise is added to new members to keep 
the diversity high, thoroughly inspect the design space and escape local minima. 

2.4. Stochastic Methods with Surrogate Models 

Depending on a systematic literature survey, the general workflow of the optimization process 
of stochastic methods with surrogate models can be condensed and is illustrated in Figure 4 [14–16]. 

 

Figure 4. Stochastic method with surrogate model. Distinct properties are numbered and detailed. 

(1) The group of design vectors is not only used for the calculation of the objective functions but 
also for the determination of the surrogate model. 
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(2) In each iteration, a new surrogate model using a DOE has to be determined. The necessary 
experimental design is dependent on the number of design variables and can hugely impact the 
computation time. Afterwards, the objective functions are fast to evaluate due to the simple formulas. 

(3) As before, termination criteria have to be checked in order to either successfully terminate or 
abort the optimization process. While approaching the optimum, the members of the group are 
resembling each other progressively. To avoid local optima, random changes are applied to the 
members. Compared to the calculation of the surrogate model, the optimization step is quite fast. 

3. Conclusions 

In this paper, based on a literature review, the fundamental workflows of different approaches 
to the design optimization problem of electric motors and their characteristics were presented. The 
last part of this multipart paper is dedicated to an assessment of these approaches. Based on the 
findings, requirements for a new design optimization method are formulated.  

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Bastos, J.P.; Sadowski, N. Electromagnetic Modeling by Finite Element Methods, 1st ed.; CRC Press: Boca Raton, 
FL, USA, 2003. 

2. Kumar, P.; Bauer, P. Improved Analytical Model of a Permanent-Magnet Brushless DC Motor. IEEE Trans. 
Magn. 2008, 44, 2299–2309, doi:10.1109/TMAG.2008.2001450. 

3. Chedot, L.; Friedrich, G.; Biedinger, J.-M.; Macret, P. Integrated Starter Generator: The Need for an Optimal 
Design and Control Approach. Application to a Permanent Magnet Machine. IEEE Trans. Ind. Appl. 2007, 
43, 551–559, doi:10.1109/TIA.2006.889900. 

4. Mai, H.C.M.; Bernard, R.; Bigot, P.; Dubas, F.; Chamagne, D.; Espanet, C. Optimal design of a PMSM using 
concentrated winding for application urban hybrid vehicle. In Proceedings of the 2010 IEEE Vehicle Power 
and Propulsion Conference (VPPC), Lille, France, 1–3 September 2010, doi:10.1109/VPPC.2010.5729015. 

5. Msaddek, H.; Mansouri, A.; Brisset, S.; Trabelsi, H. Design and optimization of PMSM with outer rotor for 
electric vehicle. In Proceedings of the 2015 IEEE 12th International Multi-Conference on Systems, Signals 
& Devices (SSD15), Mahdia, Tunisia, 16–19 March 2015, doi:10.1109/SSD.2015.7348154. 

6. Myers, R.H.; Anderson-Cook, C.; Montgomery, D.C. Response Surface Methodology. Process and Product 
Optimization Using Designed Experiments, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. 

7. Buhmann, M.D. Radial Basis Functions. Theory and Implementations, 1st ed.; Cambridge University Press: 
Cambridge, UK, 2006. 

8. Gao, X.; Low, T.-S.; Chen, S.; Liu, Z. Structural robust design for torque optimization of BLDC spindle 
motor using response surface methodology. IEEE Trans. Magn. 2001, 37, 2814–2817, doi:10.1109/20.951315. 

9. Brochet, P.; Gillon, F. Screening and response surface method applied to the numerical optimization of 
electromagnetic devices. IEEE Trans. Magn. 2000, 36, 1163–1167, doi:10.1109/20.877647. 

10. Gao, X.K.; Low, T.S.; Liu, Z.J.; Chen, S.X. Robust design for torque optimization using response surface 
methodology. IEEE Trans. Magn. 2002, 38, 1141–1144, doi:10.1109/20.996292. 

11. Cassimere, B.N.; Sudhoff, S.D. Population-Based Design of Surface-Mounted Permanent-Magnet 
Synchronous Machines. IEEE Trans. Power Appar. Syst. 2009, 24, 338–346, doi:10.1109/TEC.2009.2016150. 

12. Castellini, L.; D’Andrea, M. High speed surface PM synchronous machine for wobble laser welding. In 
Proceedings of the 2015 IEEE International Electric Machines & Drives Conference (IEMDC), Coeur 
d’Alene, ID, USA, 10–13 May 2015, doi:10.1109/IEMDC.2015.7409132. 

13. Guo, H.; Wu, Z.; Qian, H.; Sun, Z. Robust design for the 9-slot 8-pole surface-mounted permanent magnet 
synchronous motor by analytical method-based multi-objectives particle swarm optimisation. IET Electr. 
Power Appl. 2016, 10, 117–124, doi:10.1049/iet-epa.2015.0062. 

14. Qinghua, L. Response surface methodology based design optimisation of interior permanent magnet 
synchronous motors for wide-speed operation. In Proceedings of the Second IEEE International Conference 
on Power Electronics, Machines and Drives, Edinburgh, UK, 31 March–2 April 2004, 
doi:10.1049/cp:20040346. 



Proceedings 2018, 2, 1401 5 of 5 

 

15. Jolly, L.; Jabbar, M.A.; Qinghua, L. Design optimization of permanent magnet motors using response 
surface methodology and genetic algorithms. IEEE Trans. Magn. 2005, 41, 3928–3930, 
doi:10.1109/TMAG.2005.854966. 

16. Bittner, F.; Hahn, I. Kriging-Assisted Multi-Objective Particle Swarm Optimization of permanent magnet 
synchronous machine for hybrid and electric cars. In Proceedings of the 2013 IEEE International Electric 
Machines & Drives Conference (IEMDC), Chicago, IL, USA, 12–15 May 2013, 
doi:10.1109/IEMDC.2013.6556123. 

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


