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eren.kayatas@boun.edu.tr (C.E.K.); anarim@boun.edu.tr (E.A.)
* Correspondence: ramin.fadaei@boun.edu.tr
† Presented at the International Workshop on Computational Intelligence for Multimedia Understanding

(IWCIM), Kos Island, Greece, 2 September 2017.

Published: 10 January 2018

Abstract: Data availability should be guaranteed by a web service in order to satisfy customers.
One of the main challenges of information security professionals is DDoS attack which affects the
availability. By masquerading itself as a legitimate user, a DDoS attacker tries to overwhelm a server by
sending a great number of useless packets that influences the quality of service (QoS) of the network.
DDoS attack can result in a great damage to network services. Useless packets similar to normal ones
are dispatched by the attacker which leaves the intrusion detection system impotent of detection.
Transferring from conventional packet-based analysis methods to time series based (flow-based)
algorithms would be a promising alternative to spot DDoS attacks. In this work, we extract four
measures of periodicity, kurtosis, skewness and self-similarity of a time series and investigate the
performance of these parameters in separating DDoS attack from normal traffic.
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1. Introduction

Nowadays, Internet and in general on-line activities have become integral parts of our lives.
Exchanging critical information such as credit card numbers, passwords, personal information and
etc., via Internet, make it an appropriate target for cyber-criminals to carry out their illegal activities.
Therefore, all information security considerations should be taken into account to prevent any illicit
activities. One of the main concern of information security is availability. Availability means that a
web server should provide service to its authorized clients in all conditions without any interruption.
Distributed Denial of Service (DDoS) attacks threat this criterion [1,2]. By finding and compromising a
large number of vulnerable unaware users, so called Zombies, through the Internet, a DDoS attacker
makes an army to flood a victim server with a large number of spurious packets [3]. As the attack
begins, the victim tries to reply to incoming packets, eventually, because of the limited resources,
the victim will be overwhelmed and become out of reach from its legitimate users. Additionally,
packets source IP are also spoofed to make the tracing back difficult during the attack investigation [4].
In general two detection approaches of signature based and anomaly based are used by IDSs [5].
In the signature based method, a set of known malicious activities is fed to the system, some specific
features are extracted and used as the signature of those activities. When a new activity is introduced
to the system, its features are compared with the database and any match is reported as intrusion.
This method cannot detect new intrusions which are not in its database [6]. In anomaly based approach,
the pattern of normal activity is determined and any structure out of this model is reported as intrusion.
The detection rate of this approach is less than that of in signature-based method [5].

Traditional detection systems implement packet level analysis to extract features [7]. In this
method, payloads of arrival packets are scrutinized and specific attributes which are different in
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normal and abnormal activities are obtained. Most of the new DDoS attacks mimic the legitimate web
service traffic, which leaves the traditional methods ineffective in detecting intrusions. Flow level
analysis and treating DDoS attack as a time series would be an alternative for traditional methods.
In this method, at each specific time interval, the number of arriving packets or the number of flows
are counted, a time series is generated and its statistical features are obtained to separate attack from
normal traffic.

In this work, we extract four statistical measures of periodicity, kurtosis, skewness and Hurst
exponent from network traffic time series. CAIDA 2007 and CAIDA 2008 are used as attack and
normal traffics respectively [8]. All simulations are carried out in Matlab R2016a [9].

The rest of this paper is organized as follow: In Section 2, related works in time series based DDoS
attack detection are discussed. In Section 3, the concept of four statistical measures are discussed.
Section 4 belongs to discussion and result. The paper is concluded in Section 5.

2. Related Work

Different literatures have employed the capability of the time series based methods to analyze
traffic patterns, and to discover abnormalities. Authors in [10], proposed an ARIMA model time series
to detect DDoS attack. Number of packets in every one minute is sampled. Then number of packets in
the following minute is estimated using ARIMA model. The repeatability of chaotic behavior and the
enormous growth in the ratio of number of packets to the number of source IP are used to identify
attack. A real-time application layer DDoS attack detection based on time series analysis is proposed
in [11]. The time series is generated based on the entropy of HTTP GET request per source IP address.
Adaptive autoregressive model (AAR) is employed to create time series. Support vector machine
(SVM) classifier is implemented to classify attack. Authors in [12] propose a wavelet based anomaly
detection algorithm. The anomalous activities in a network traffic are determined by using high-band
wavelet components. Authors in [13] use spectral analysis to detect shrew DDoS attack in TCP/UDP
streams. Using two deviation scores obtained from power spectrum of the traffic flow, authors in [14]
classify traffics of an NGMN as normal, DoS and DDoS. Authors show that the energy of power
spectrum of Dos and DDoS attacks are distributed in low and high frequency bands respectively.
Authors in [15] based on statistical methods, propose an algorithm to detect bottleneck remotely.
The strong frequencies in aggregate traffics are scrutinized to find bottlenecks. This algorithm is also
applicable for DDoS attack detection. Authors in [16] propose a frequency based approached to detect
specific types of DDoS attack called booters. Low frequency features obtained by combining spectrum,
and discrete wavelet analysis, are used by a naive Bayes classifier to separate normal traffic from
abnormal one.

In this paper, we contribute to previous works, by considering four statistical properties of a time
series consisting of periodicity, kurtosis, skewness and self-similarity. By using binary hypothesis test,
the capability of these measures to separate attack from normal traffic are examined

3. Theory and Overview

3.1. Periodicity

In order to find the periodic component in a time series, we need to estimate power spectral
density (PSD). The distribution of energy in different frequencies is revealed by PSD. Since period and
frequency are the reverse of each other, dominant periods can be identified by finding frequencies
which carry most of the energy. Periodogram and circular autocorrelation are two popular estimators
that are used to find PSD [17]. Both methods are calculated using Discrete Fourier Transform (DFT) [18].
Assume X is the DFT of a sequence x with N samples. The periodogram is computed by squaring the
length of each Fourier coefficient as:

P( fk/N) = ||X( fk/N)||2 k = 0, 1, . . . ,
N − 1

2
(1)
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which indicates the amount of energy at frequency k/N, or equivalently, at period N/k. Low accuracy
in detection of large period components and spectral leakage are two main issues associated with
this estimator [17]. The second way to find dominant periods in a time series is to estimate circular
autocorrelation function(ACF):

ACF(τ) =
1
N

N−1

∑
n=0

x(τ).x(n + τ) (2)

which can be used as a metric to find how similar a sequence is to its previous values. ACF can
address the problems related to periodogram estimator. This approach which will be used in this
paper, is introduced in [17]. First we find candidate periods by using periodogram estimator. If a
candidate period resides on the hill of ACF, we consider it as a true one, otherwise we discard it as a
false alarm. In order to avoid high DC component at zero of periodogram causing by existing trend in
the sequence, the trend is eliminated from the input sequence before introducing to the estimator.

3.2. Skewness and Kurtosis

The lack of symmetry in a distribution is identified by using skewness. If a distribution is
symmetric, the left and right sides of its center look the same. For a time series x, the skewness is
estimated by:

S =
1

Nσ3

N

∑
n=1

(xn − x̄)3 (3)

where x̄ and σ are mean value and standard deviation of the sequence respectively. The skewness of
normal distribution is zero. Negative value of skewness indicates that the distribution is left skewed,
on the other hand values greater than zero mean right skewed.

In order to find how flat or peaked a distribution compared to normal distribution, kurtosis is
used. For a time series x, kurtosis is estimated by:

K =
1

Nσ4

N

∑
n=1

(xn − x̄)4 (4)

3.3. Self-Similarity (Long-Range Dependence)

Self-similarity is the property associated with the object whose structure is unchanged at different
scales [19]. A stochastic process is self-similar if:

X(at) = aHX(t), a > 0 (5)

Equation (5) refers to the equality of probability distribution. a is the scaling factor and H is called
the Hurst parameter. Using the Hurst exponent we can classify time series into types and gain some
insight into their dynamics. In a Brownian time series (also known as a random walk or a drunkard’s
walk) there is no correlation between the observations and a future observation. A Hurst exponent
close to 0.5 is indicative of a Brownian time series. A Hurst exponent value between 0 and 0.5 is
indicative of anti-persistent behavior and the closer the value is to 0, the stronger is the tendency for
the time series to revert to its long-term means value. A Hurst exponent value between 0.5 and 1.0
indicates persistent behavior; the larger the H value the stronger the trend.

4. Discussion and Result

In this work, passive monitoring is used to obtain data for both normal and DDoS traffics. In order
to generate time series x[n], the number of arrival packets in each 1 ms are counted. Timestamps
values in pcap files of CAIDA datasets are used to find arrival time. Having generated both attack and
normal time series, each random process is further divided into 1024-length window. Finally, we have
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two matrices of normal and attack traffics. Each row is a 1024-length sample window of arrival packets.
Statistical measures of each row consisting of periodicity, kurtosis, skewness and Hurst parameter are
used as the features to segregate attack from normal traffic.

Each dataset consists of 400 windows. These two sets further divided into two subsets of Training
and Test, which include 340 (85%), and 60 (15%) features respectively. Figure 1 displays the histogram
of both normal and traffic packets number (The obtained x[n]). Both histograms are normalized to
make the number of arrival packets reside in [0 1] interval. From the Figure 1, it can be deduced that
packet number by itself- cannot be a good feature to distinct attack from normal traffic; so, appropriate
ones should be extracted from the packet number time series. Table 1 summarizes the statistical
measures of both traffics. Both traffics are heavy tailed and right skewed. Table 1 confirms that both
kurtosis and skewness could be used as the criteria to separate attack from normal traffic.

Figure 1. Normalized Histogram of Arrival Packet Numbers, (a) Normal, (b) Attack.

Table 1. Statistic Measures of Both Traffics.

Mean Std Kurtosis Skewness

Normal 0.47 0.06 4.63 0.98
Attack 0.23 0.12 11.42 2.42

4.1. Training

According to the Nyquist theorem, the maximum frequency of received signal which can be
realized, is 500 Hz. By 1024-length window, we achieve 0.488 Hz frequency resolution, distributed
in 512 bins. Figure 2 displays the normalized average periodogram of training datasets. In contrast
to main energy of normal traffic which resides in lower frequencies, the attack one is distributed in
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different bounds of frequencies. Moreover, it can also be deduced that attack traffic has more periodic
components than normal traffic. Figure 3 displays the normalized histogram of number of period
components for both traffics. Both traffics share different number of periodic components; therefore,
this feature would not be a good choice for DDoS attack detection.

Figure 2. Normalized Averaged Periodogram, (a) Normal, (b) Attack.

Figure 3. Normalized Histogram of Number of Period Components.

Figure 4 displays the normalized histogram of skewness values for training windows. Both traffics
are right skewed, but the attack one has heavier tail than the normal one which can be confirmed
considering Figure 1.



Proceedings 2018, 2, 96 6 of 9

Figure 4. Normalized Histogram of Skewness.

Figure 5 shows the normalized histogram of kurtosis value for both normal and attack traffics.
Both traffics have heavy tailed distribution. While the kurtosis of normal traffic is distributed near the
value of 4, the kurtosis of attack has a large variance.

Figure 5. Normalized Histogram of Kurtosis.

The Hurst exponent distribution for both traffics is depicted in Figure 6. The attack traffic tends
to have anti-persistent behavior; on the other hand, normal traffic has persistent behavior.

Receiver operating characteristics (ROC) is used as the performance criterion [20].
The discrimination accuracy of a model, can be related to the area under the ROC which is so called
area under the curve(AUC) [20]. Figure 7 displays the ROC of four different statistical parameters.
The corresponding AUC and threshold values are summarized in Table 2.
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Figure 6. Normalized Histogram of Hurst Exponent.

Figure 7. Receiver Operating Characteristics of four different statistical parameters.

Table 2. AUC and Threshold Values for Different Parameters.

Period Kurtosis Skewness Hurst Exponent

AUC(%) 85.66 99.86 99.95 97.96
Threshold Value 2 4.5 1 0.57

4.2. Test Result

Having found the threshold value for each statistical parameter, test dataset is used to examine
the performance of each measure for separating attack from normal traffic. If the values of kurtosis,
skewness, and periodic components greater than those thresholds specified in Table 2, the test sample is
assumed to be an attack, otherwise it is classified as a normal instance. For Hurst parameter, values less
than corresponding threshold is considered to be an attack. Three metrics of false positive rate (FPr),
true positive rate (TPr) and accuracy (ACC) are used which are defined as:

TPr =
TP

TP + FN
(6)

FPr =
FP

TN + FP
(7)

ACC =
TN + TP

TN + TP + FN + FP
(8)
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Each test traffic consists of 60 sample windows. Using thresholds from Table 2 and then
carrying out binary hypothesis test, the confusion table for all measures are summarized in Table 3.
Skewness outperforms all other parameters. Although both histograms share a common area less than
the threshold vale of 1 in Figure 4, it can be considered to be the effect of outliers on attack traffic.
Considering the packets number histogram in Figure 1, normal traffic tends to be more symmetric
than does attack traffic, therefore; out-performance of skewness in detection is logically expected.
The least performance belongs to period parameter. The reason for this low performance can be
inferred from Figure 3. It is clear that both normal and attack dataset overlap each other in different
part of histogram. Kurtosis and Hurst exponent also performs well enough in detecting DDoS attack.
The test results agree with the outcomes of the training part. As two histograms share more area in
common, the detection accuracy decreases.

Table 3. Confusion Table.

Normal Attack TP(%) FP(%) Accuracy (%)

Period Normal 46 14 80 23.33 78.33
Attack 12 48

Kurtosis Normal 58 2 95 3.33 95.83
Attack 3 57

Skewness Normal 60 0 96.67 0 98.33
Attack 2 58

Hurst Normal 55 5 91.66 8.33 91.66
Attack 5 55

5. Conclusions

Availability of web services plays an important role in customers satisfaction. DDoS attacks
are the major threats for this key parameter. Pretending to be a legitimate user, an attacker deluge
the victim server with fraudulent and useless packets. Many efforts have been made to detect
and counter-measure against DDoS attacks. Traditional methods rely on packet level scrutinizing.
In these methods, payloads of arriving packets are scanned to find for any suspicious activity.
New attack’s payload characteristics are very similar to normal packets, which leave these methods
ineffective. Flow level analyzing might be an alternative. In this proposed new method, the network
traffic is treated as a time series. The statistical measures of the time series are used to find
abnormality. In this paper, four measures of periodicity, kurtosis, skewness and self-similarity were
examined. Skewness outperformed other parameters in separating DDoS attack from normal traffic.
The performance of kurtosis and Hurst exponent were also acceptable.

Conflicts of Interest: The authors declare no conflict of interest.
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