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Abstract: Deep features, defined as the activations of hidden layers of a neural network, have given
promising results applied to various vision tasks. In this paper, we explore the usefulness and
transferability of deep features, applied in the context of the problem of keyword spotting (KWS).
We use a state-of-the-art deep convolutional network to extract deep features. The optimal parameters
concerning their application are subsequently studied: the impact of the choice of hidden layer,
the impact of applying dimensionality reduction with a manifold learning technique, as well as the
choice of dissimilarity measure used to retrieve relevant word images. Extensive numerical results
show that deep features lead to state-of-the-art KWS performance, even when the test and training
set come from different document collections.
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1. Introduction and Related Work

Keyword spotting (KWS) is essentially the problem of image retrieval, cast on the context
of collections of document, line and word images [1]. Depending on whether the scanned
document is pre-segmented, either manually or automatically, into line or word tokens, an important
taxonomy of KWS methods is in (line or word) segmentation-based and segmentation-free methods.
Not surprisingly, learning-based methods are in general better performing than learning-free
KWS methods [1]. The vast majority of recently proposed learning-based methods includes deep
learning-based methods, which seem to have dominated this field as well [1–3].

In the context of KWS, the typical use of deep neural networks involves first training the model
on pairs of segmented word or line images and annotations. Subsequently, using a feed-forward pass
given an input word image, a descriptor is produced on the network output layer. The descriptor is
then compared to descriptors of other words to give a sorted relevance list. It has however been noted
that layers other than the output layer can be used to produce features. These features, corresponding
to one (or more) hidden layers of the network, have been commonly known as deep features [4] in
the literature (or hypercolumns [3,5], when more than one layer activations are combined). In other
machine vision tasks, deep features have often led to superior results compared to the standard use
of the network [4]. This is due to their being able to capture more abstract traits of the input [6].
This observation has inspired Zoning-Aggregated Hypercolumn (ZAH) features, proposed in [3],
where deep features are extracted, processed and applied on a KWS task.

In this work, we use PHOCnet [2] as our model of reference. PHOCnet is a Deep Convolutional
Network that has recently been proposed for KWS. We use PHOCnet to produce network outputs,
i.e., using it as was originally intended, as well as to extract deep features suitable for the KWS task.
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With extensive numerical experiments, we validate the usefulness of deep features on various different
setups for KWS. Furthermore, we show that deep features are much more transferable compared to
simply using the network output. Even when the model seems to overfit on a particular training
collection (an aspect that seems to have been overlooked on various recent works that nevertheless
report very high performance figures [1]), deep features by comparison exhibit much better generality,
in the sense of being applicable to a test set that comes from a different collection than the training set.

Another parameter that we explore is the value of combining manifold learning with the
extracted features [7,8]. The intuition behind manifold learning methods is that data empirically lie on
low-dimensional manifolds that span a relatively low volume of the original space. This hypothesis,
commonly known as manifold hypothesis, has led to a series of methods that attempt to estimate the
characteristic of the data manifold. We use the recently proposed t-SNE manifold learning method
in this work. t-SNE has shown to be successful and enjoys a number of benefits—for example, it has
shown to be robust to the so-called crowding problem (embedding coordinates crowding around
zero) [7]. We show that using manifold learning to reduce the dimensionality of our features leads to
increased KWS performance.

Furthermore, the question of which dissimilarity measure is more suitable for descriptor
comparison is explored. As an alternative to the Euclidean distance, the Bray-Curtis dissimilarity
(BC) has recently been employed in the context of keyword spotting [2,9]. We compare BC
with the Euclidean distance, with and without applying L2-normalization before evaluation.
Numerical experiments show that the L2-normalized Euclidean distance gives the best KWS results.

The remainder of this paper is organized as follows. In Section 2 we describe the employed
pipeline to produce transferable deep features. In Section 3 we present numerical results comparing
various setups of the proposed pipeline on KWS trials. We close the paper with Section 4 where we
summarize our conclusions.

2. Method and Model Parameters

We assume a Query-by-Example (QbE) segmentation-based KWS scenario and the Mean Average
Precision (MAP) evaluation metric [1]. This means that all data-both training and test- are segmented
word images, and queries are word images as well. The core of the proposed method consists of using
a CNN as a feature extractor. We have used PHOCnet [2], a CNN architecture recently proposed
for segmentation-based KWS. PHOCnet was the best performing model on the recent ICFHR 2016
KWS competition (unpenalized MAP scenario) [1]. After having trained the CNN, the extracted Deep
Features are defined simply as the activations of a hidden model layer, when a specific word image
input is provided. Given all word images, plus the query, we thus create descriptors—one for each
word image—based on deep features. These descriptors are typically of high dimensionality, with the
exact number of the latter depending on the number of neurons per hidden layer. For example, the
dimensionality of the features generated from layer spp5 (the closest to network input) is 10,752. Hence,
a dimensionality reduction method can be applied to reduce the dimensionality of the descriptor. The
final descriptors can then be compared using some measure of dissimilarity, in order to provide the
retrieved query list. In the following subsections we explain these steps in more detail.

2.1. Neural Network Architecture and Deep Features

PHOCnet is a standard feed-forward neural network. The word image to be processed is fed to the
network input, with information flowing first through a number of alternating standard convolutional
and max pooling layers. The size of all these layers depends on the size of the input image. The last
convolutional layer is then fed to a spatial pyramid max pooling layer (SPP) [10]. The SPP layer
(referred to as spp5) produces a fixed-size output given a variable-size input, as it processes input from
the previous layer after partitioning it into a hierarchy of grids of variable resolution (4× 4, 2× 2, 1× 1).
The SPP property of producing a fixed-size output regardless of the input, is in a way inherited by
the whole model. In this manner, there is no need either to scale the input image to a fixed size or
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perform some manual zoning step afterwards, as done in [3] for example. The output of the SPP is fed
to two fully connected layers, coupled with ReLU non-linearities (referred to as relu6, relu7). The final
layer is structured in a manner to reflect the structure of a Pyramidal Histogram of Character (PHOC)
vector [11]. PHOC variates capture information about the word, in the form of a set of word attributes.
Each output neuron is coupled with sigmoid nonlinearities, producing an output vector with values
ranging between 0 and 1. Regarding further details on the network architecture, as well as details
on how training is performed (parameters, number of iterations, use of dropout, etc.), the reader is
referred to the original publication [2]. All layers between the input layer and the SPP layer are of
variable size, as they depend on the input word image size. Deep features extracted using activations
of these layers would hence be not directly comparable to one another, as each one would lie on a space
of different dimensionality. For that reason, we cannot extract useful deep features from these layers
(at least without applying some postprocessing scheme to make them comparable, a question which
we shall not explore in this paper). Therefore, we use spp5, relu6 and relu7 to extract deep features.

2.2. Manifold Learning

We use t-SNE as our non-linear manifold learning technique of choice [7]. In t-SNE, the goal
is to minimize the divergence between pairwise similarity distributions of input points and the
low-dimensional embedded points. The N input points are denoted as {xi}N

i=1 and their corresponding
embeddings are denoted as {yi}N

i=1. The joint probability pij that measures the pairwise similarity
between two points xi and xj is defined as pij = (2N)−1(pj|i + pi|j), with pj|i ∝ exp(−d(xi, xj)

2/2σ2
i ).

A typical choice for d(·, ·) would be the Euclidean distance. In this work, we experiment with other
distances as well. The standard deviation σi is computed according to a predefined perplexity which
can be considered as the effective number of neighbors for each point xi. The pairwise similarities
in the embedding space are modeled by a normalized Student’s-t distribution with a single degree
of freedom. The embedding similarity between two points yi and yj is defined as: qij = (1 + ‖yi −
yj‖2)−1/ ∑k ∑l 6=k(1 + ‖yk − yl‖2)−1. The target embedding is finally calculated by minimizing the
Kullback-Leibler (KL) divergence ∑i ∑j pijlog(pij/qij). As this objective does not have an analytical
solution, gradient descent is used to solve it [7]. The result of this optimization are the embedding
coordinates that correspond to each input word image. These are subsequently used as the finally
employed word image descriptors.

2.3. Dissimilarity Measures

We perform comparisons on all extracted features using three different dissimilarity measures:
The Euclidean distance (L2), the Bray-Curtis dissimilarity (BC), and the normalized Euclidean
distance (L2-normal). As we employ manifold learning (see previous subsection) to reduce feature
dimensionality, we use the chosen measure to learn the manifold by plugging it into the related
similarity equation for pij (see previous subsection). Comparisons on the reduced space are always

performed using the Euclidean space. BC is defined as dBC(a, b) = ∑i |ai−bi |
∑i ai+bi

. It has originally been
proposed as a measure of distance between histograms [12]. In practice, it can be used with any
nonnegative-valued pairs of vectors. We must note that BC is not a distance metric in the strict
mathematical sense, as it does not adhere to the triangle inequality [12]. However, for all practical
intent, at least in the scope of the current application, this is not a problem.

The normalized L2 distance (L2-normal) is the Euclidean distance computed over L2-normalized
versions of the original vectors. This is tantamount to what is referred to in the literature as cosine
or dot-product distance. In other words, the angle between vectors is measured, regardless of the
magnitudes of the compared vectors. Given normalized vectors, this distance is easy to compute, as it
only involves computing a dot product. That is the reason why numerous authors seem to prefer it
over the Euclidean distance (e.g., [11]), however as we shall see in Section 3 its use can also lead to
slightly improved performance.
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3. Numerical Results

For our experiments we have used a variaty of well-known collections of handwritten
documents [1]. These are namely the GW20, IAM, Bentham14 and Modern14 sets [1]. GW20 is
a collection of 20 historical manuscripts. It has been written by G. Washington and his associates, but is
characterized by quite limited variability in style. The IAM collection is rightly considered to be much
more challenging, as well as much more diverse than GW20, as it contains material written by 657
writers. IAM and GW20 are used in separate trials to train our neural network, as described in [2].
Bentham14 and Modern14 have been introduced originally in the context of the ICFHR 2014 HKWS
competition [1].

We have first trained our model on the IAM database, and run tests over itself (cross-validated
folds) as well as GW20, Bentham14, Modern14. The parameters of the test were (a) extracting deep
features from different network layers (we compare spp5, relu6, relu7) (b) applying t-SNE to produce
low-dimensional embeddings or not (c) using different dissimilarity measures (we compare BC, L2,
L2-normal). Prior to applying t-SNE, we first compute projections with PCA. As BC is suitable for use
only with nonnegative vectors (preliminary tests of the BC on real-valued vectors have shown that
performance deteriorates severely) we do not apply PCA in that case. The PCA projection and the
t-SNE embedding dimension was fixed in all cases to 400 and 4 respectively.

A number of observations can be made on these results, presented in Table 1. First, embedding with
t-SNE gives in most cases a slight up to considerable boost. Concerning the best layer choice,
deep features consistently outperform the “output” of the NN. Regarding the choice of dissimilarity
measure, L2 gives the worst results. Both L2-normal and BC achieve improved results.

In Figure 1, we show a comparison of results using different layers to extract features.
The L2-normal distance is used in all cases.

In Table 2 we present a list of the best performing deep features, and a comparison of their
performance against extracting descriptors from the output layer. Note that in almost every case,
deep features give the best performing descriptors. The difference between best layer and output in
terms of MAP, can reach more than 17% (Table 2, train on IAM/test on Modern14). A gain of 5–10%
performance on average seems to be the norm. We report only results over t-SNE embedded features,
which have shown slightly better performance as we have seen on the previous results; however
they are strongly correlated to the results obtained without applying t-SNE. Only the output of the
GW20-trained net seems to perform better than deep features, with a negative difference (−1.3%).
This can be explained due to the limited style variability of GW20, which leads to overfitted high results
on itself and low results on other datasets. Bentham14 seems to be an exception, at least to a certain
extent. This can be attributed to the similar style of these two datasets (for example, Almazán et al. [11]
had trained a model on GW20 and tested it on Bentham14 with considerable success [13]).

Interestingly, deep features give improved performance even in cases when using the model
output would give almost zero MAP (for example, Table 2, train on GW/test on IAM or Modern14).
The case of training on GW20 is indeed particularly noteworthy: the same model gives figures close
to 100% when tested and trained on different folds of the same database, but results become very
inadequate when tested on input coming from a different database. This is evidently a case of
overfitting. In our opinion, this result is quite alarming, as many recent works have focused on
obtaining the best figure with training and testing on the same database [1], neglecting to report how
the same model would fare if tested on a different set.

On the other hand, deep features comparatively show better performance, even when using a
model that has overfit on a specific set. This validates the point that deep features are transferable and
lead to less specific, more general features compared to the network output.



Proceedings 2018, 2, 89 5 of 8

spp5 relu6 relu7 output
85

90

95

100

w/o t-SNE

w/ t-SNE

spp5 relu6 relu7 output
0

5

10

15

20

w/o t-SNE

w/ t-SNE

spp5 relu6 relu7 output
60

65

70

75

80

w/o t-SNE

w/ t-SNE

spp5 relu6 relu7 output
0

5

10

15

20

25

30

w/o t-SNE

w/ t-SNE

spp5 relu6 relu7 output
60

65

70

75

80

85

90

w/o t-SNE

w/ t-SNE

spp5 relu6 relu7 output
60

65

70

75

80

85

90

w/o t-SNE

w/ t-SNE

spp5 relu6 relu7 output
70

75

80

85

90

95

w/o t-SNE

w/ t-SNE

spp5 relu6 relu7 output
65

70

75

80

85

90

95

w/o t-SNE

w/ t-SNE

Figure 1. Performance comparison (MAP%) using different network layers to extract deep features, versus using the network output. Results using models trained
on GW20 (top row) and IAM (bottom row) and tested on GW20, IAM, Bentham14, Modern14 (from left to right column) are shown. The colour of the bars correspond
to using (blue) versus not using (yellow) t-SNE embeddings. Note that, especially when the training and test folds come from different collections, using deep features
leads to clearly much better performance.
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Another interesting point is that features obtained from the NN trained on IAM are considerably
transferable. We attribute this fact to the rich variability of the IAM dataset, which contains data coming
from hundreds of writers, compared to the much smaller and less variable GW20 set. Furthermore,
in this case, the t-SNE embedding achieves a noteworthy gain, regardless the layer or the dataset used.
Deep features extracted using the NN trained on IAM, outperform all other methods in the literature
compared on the sets of ICFHR’14 by a significant margin (Table 3).

Table 1. MAP results of KWS trials over different test sets, different layers to extract deep features,
and different dissimilarity measures. PHOCnet trained on IAM was used in all cases. Figures are
results obtained without using t-SNE embeddings.

GW20

BC L2 L2-Normal

spp5 (76.3) 80.4 (74.9) 78.4 (77.6) 81.4
relu6 (82.1) 84.1 (75.6) 81.8 (79.0) 84.4
relu7 (80.2) 82.4 (74.7) 79.5 (78.3) 81.9

output (76.0) 78.4 (72.7) 73.4 (74.9) 75.9

IAM

BC L2 L2-Normal

spp5 (59.5) 63.6 (62.0) 67.0 (68.4) 72.8
relu6 (74.6) 79.4 (70.0) 75.6 (78.2) 81.5
relu7 (75.5) 80.0 (69.4) 74.2 (78.03) 81.2

output (76.1) 79.5 (73.5) 74.4 (76.7) 77.6

Table 2. Performance comparison (MAP%) of deep feature performance vs standard NN output.
Results using models trained on IAM (a) and GW20 (b) are presented. The layers related to the best
deep features are indicated, along with the boost compared to performance using standard NN output.

(a)

Deep Features PHOCNet Output Boost

GW20 84.4(relu6) 75.9 +8.5
IAM 81.5(relu6) 77.6 +3.9

Bentham14 87.8(relu6) 79.8 +8
Modern14 91.1(relu6) 74.0 +17.1

(b)

Deep Features PHOCNet Output Boost

GW20 95.3(relu7) 96.6 −1.3
IAM 15.0(spp5) 2.8 +12.2

Bentham14 72.0(relu7) 64.5 +7.5
Modern14 16.4(spp5) 8.4 +8.0

Table 3. Comparison versus state-of-the-art KWS methods. Results using the IAM-trained PHOCnet
model are used to extract deep features.

Method Bentham14 Modern14

Kovalchuk et al. [14] 52.4 33.8
Almazán et al. [11] 51.3 52.3

Howe [15] 46.2 27.8
Retsinas et al. [16] 57.7 35.5

Sfikas et al. [3] 53.6 32.1

PHOCNet output 79.8 74.0
Deep Features 87.8 91.1
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4. Conclusions

In this work, we validate the usefulness of hidden layer activations for extracting deep features
and use them to perform keyword spotting. With extensive numerical experiments, we have shown
that these features are transferable; that is in the sense that their performance is by comparison more
robust to being applied to different styles and sets. Such features achieve results significantly better
compared to features obtained through the “standard” NN use, i.e., using its output.

We have also used different dissimilarity measures for descriptor comparison. Our results suggest
that a form of normalization is beneficial for the task, regardless of the type of features. Concerning the
Bray-Curtis dissimilarity in particular, we show that even if the motivation for its use was originally to
compare histograms, it clearly works even for deep features, which do not have any such significance.

Also, the application of manifold learning led consistently to better results according to our
experimental results. Compared with state-of-the-art methods applied on datasets of a recent KWS
competition (Bentham14, Modern14) the proposed features lead to significantly superior numerical
results, even though using a model trained on a different set (IAM).

Acknowledgments: The research leading to these results has received funding from the European Union’s
Horizon 2020 research and innovation Programme (H2020-EINFRA-2014-2015) under grant agreements no 674943
project READ.
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