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Abstract: This short paper presents the activity recognition results obtained from the CAR-CSIC team
for the UCAmI’18 Cup. We propose a multi-event naive Bayes classifier for estimating 24 different
activities in real-time. We use all the sensorial information provided for the competition, i.e., binary
sensors fixed to everyday objects, proximity BLE-based tags, location-aware smart floor sensing
and the wrist’s acceleration. The results using training data-sets of 7 days show accuracies (true
positives) about 68%; however for the three extra data-sets of the competition we were able to reach
a 60.5% accuracy.
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1. Introduction

Several activity recognition competitions have already been proposed during the last years.
Some examples are CVPR and VISUM which are focused on the analysis of video and images to deduce
the activities taking place [1,2]. Activity recognition (AR), is more than detecting actions in video
frames, and it is a very challenging topic that has been studied by many research groups. The different
approaches found in the literature differ mainly in terms of the used sensor technology, the machine
learning algorithms and the realism of the environment under test [3]. Regarding sensors, apart from
video, some works include the use of wearables such as smartwatches that include accelerometers or
gyroscopes that allow the detection of activities that depend on the motion or orientation of the person
(standing, lying on the bed, walking, etc.) [4]. More common is to use environment sensors such as
infrared motion detectors (PIR) or reed switches coupled to doors or objects that must be placed on
a base. With this kind of sensor is possible to detect when a person leaves or enters home, use the
dishwasher or take a remote control [5]. Other environment sensors have been explored using RFID
tags or BLE beacons for proximity detection.

Many different algorithmic approaches have been presented [3,5–10] trying to achieve good
accuracies in activity recognition, from naive Bayes, hidden Markov classifiers, AdaBoost classifiers,
Decision trees, Support vector machines or conditional random fields, all combined with different
heuristics, windowing and segmentation methods. In short paper we will describe the use of a naive
Bayes approach with emphasis on multi-type event-driven location-aware activity recognition. We will
make use of all datasets available for the competition. We will not use any segmentation phase,
so algorithms interpret the received sensor events as soon as they are measured and activity estimations
are generated in real-time. The naive Bayes classifier is complemented with an activity prediction
model that is used in order to guess the more-likely next activities to occur under a recursive Bayesian
estimation approach.
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Next Section 2 explains the methodology, and the following ones the modeling of activity
sequences, the modeling of sensor events, and the final Section 5 the activity classification results.

2. Methodology

In the literature there are mainly three common approaches for processing streams of data [3]:
(1) Explicit segmentation, (2) Time-based windowing and (3) Sensor event-based windowing.
The explicit segmentation process tries to identify a window where an individual activity could
be taking place, and the purpose is to separate (segment) those time intervals for a second classification
stage. The second approach, the time-based windowing, divides the entire sequence of sensors
events into smaller consecutive equal-size time intervals. On the other hand, the sensor event-based
windowing divides the sequence into windows containing equal number of sensor events. The problem
of all these approaches is defining the criteria to know how to select the optimal window values, or the
number of events within a window. The result of the segmentation gives a sequence of non-overlapping
intervals, so if the found intervals are too small or two large, then the classification can be confused
since several activities could be present in one segment, or on the contrary, just a fraction of an activity
could appear in the window.

We propose to use a fixed-size moving overlapping window to avoid doing an explicit data
segmentation. We process the events as they are received, in real-time, but we do not assume
that the time window contains an activity that must be classified. We assume that the window
contain information that can be used to accumulate clues that increase the probability of being
doing a particular activity. This segmentation-free approach is implemented using an iterative
activity likelihood estimation while the fixed window is moved over time (at one-second interval
displacements). A recursive Bayes filter is implemented as an improved version of a naive-Bayes
classifier. Instead of doing an static classification based on the events present in a window, we do
a dynamic process. The method uses an activity state vector x = (w1, w2, . . . , wa, . . . , wn) representing
the likelihood of doing a given activity a, where a ∈ 1 . . . n, being n = 24 the number of different
activities. The weights wa of the activity state vector x evolves over time as new overlapped windows
containing events are received. The Bayes filter approach allow the use of process models (probability
of transition from an activity to a different one) and measurement models (probabilities of receiving
an event for each activity). The final Bayes classifier is implemented using a decision rule (maximum
a posteriori or MAP) that takes as the classified activity that with the maximum probability or weight
in the activity vector.

3. Modeling Activity Sequences

Dataset were analyzed in order to see the number of occurrences, the mean duration of each
activity, the minimum or maximum time and its percentage of change respect to the mean value (∆t).
Table 1 shows this analytic results. A total of 169 activities are detected in those 7 days. A few high
frequency activities (more than 7 times in 7 days) are detected, being: Brush teeth (21 times, i.e., 3 times
a day), dressing (15 times), entering/leaving the smartlab (12/9 times), put waste in bin (11) and
using the toilet (10). Unfrequent activities are playing a video game (1), relax on the sofa (1), visit (1),
dishwasher (2) and work on a table (2).

We also analyzed the correlation between one activity type and the next one, in order to identify
a repetitive sequence pattern. This analysis is presented in Figure 1. It can be seen that activities
number 2, 3 and 4 are always followed by activities 5, 6 and 7 (i.e., after Prepare breakfast the next activity
is Breakfast, after Prepare lunch the next activity is Lunch, and after Prepare dinner the next activity is
Dinner). We observe that after activity 7 (Dinner) is quite probable to do activity 1 (Take medication).
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Table 1. Statistics from the training set of activities (7 days).

Activities Time in Seconds
∆t(%) Count

ID Description Mean Max Min

1 Take medication 100 158 60 98 7
2 Prepare breakfast 198 374 89 144 7
3 Prepare lunch 483 614 173 91 6
4 Prepare dinner 244 314 176 57 7
5 Breakfast 258 379 167 82 7
6 Lunch 401 649 303 86 6
7 Dinner 350 454 195 74 7
8 Eat a snack 67 95 46 74 5
9 Watch TV 420 792 123 159 6
10 Enter the SmartLab 51 73 38 68 12
11 Play a videogame 401 401 401 0 1
12 Relax on the sofa 1046 1046 1046 0 1
13 Leave the SmarLab 51 73 38 69 9
14 Visit in SmartLab 43 43 43 0 1
15 Put waste in the bin 136 247 73 128 11
16 Wash hands 57 67 36 54 6
17 Brush teeth 79 126 47 100 21
18 Use the toilet 49 70 36 69 10
19 Wash dishes 40 44 36 20 2
20 Wash clothes 54 63 45 33 6
21 Work at the table 512 637 387 49 2
22 Dressing 98 168 60 110 15
23 Go to the bed 90 128 54 82 7
24 Wake up 123 202 53 121 7
25 None 23 155 1 658 169

Transitions between consecutive Activities

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Next activity

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

In
it
ia

l 
A

c
ti
v
it
y

Figure 1. Transition matrix relating activities with the next activity, obtained from the seven days
training set.

Many other activity transitions are correlated, and we can take advantage of this most probable
activity propagation to forecast the next activity to come. Details of how we did it is presented in [11].
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4. Modeling of Sensor Events

In this subsection we will show the different relations between the different sensor events and the
performed activities. We will concentrate the description on binary sensors. The creation of the other
measurement model relating activities and events (floor, proximity and acceleration) can be found
in [11].

Observing the binary events for the whole seven-days training set, we obtained the probability
relation matrix in Figure 2. We can observe that some sensor events clearly identify certain activities,
for example, binary 5 (wardrobe clothes) is correlated with activity 22 (Dressing); or binary 19
(Fruit platter) is correlated with activity 8 (Eat a snack). On the contrary, some sensor events do
not clearly relates to any activity; this is the case of most motion sensors (numbers 6, 7, 8, 9) which
corresponds to presence detection at the kitchen, bed, bedroom and sofa, respectively.

Relation between BinaryEvents and Activities
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Figure 2. Measurement matrix relating binary events with activities, obtained from the seven days
training set.

The activity clues derived from binary sensors are accumulated in an auxiliary state vector xbinary
that is computed as follows:

xk
binary =

31

∑
b=1

δ(b) ∗ binary(b, :), (1)

where δ(b) is the dirac function if a given binary b is found in the 90-s window. And binary(b, :) is the
binary relation vector extracted from one row out of 31 binary events in matrix in Figure 2.

Other information, apart from binary events were used, such as proximity events created when
BLE RSSI is strong enough, a floor tile is stepped, or from other events created when the standard
deviation of the acceleration magnitude is higher than a given threshold. The final measurement
model integration of the whole weighs coming from sensor events (Binary, BLE, Floor and Acce) and
time periods is done as follows:

xk = {w1 ∗ xk
Binary + w2 ∗ xk

BLE + w3 ∗ xk
Floor + w4 ∗ xk

Acce} ∗ xk
Day, (2)
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where w1, w2, w3 and w4 are arbitrary weights to take more into account some sensor events than
others. In the implementation used to generate the results shown in next section, we used these values,
(1, 0.5, 0.7, 0.3) , respectively.

The reason for adding up the clues from sensors instead of multiplying them, as the naive principle
of independent measurement suggest, is for increasing the robustness of sensor condition registration.
In many situations not all sensor events are triggered so it could lead to many activities being rejected,
when in reality they could be being performed, so causing frequent degeneration of the probability
vector (all vector equal to zero in all their activities). The addition of clues, in a voting manner, makes
the solution more robust against sensor noise or incomplete measurement models.

5. Activity Recognition Results

The overall detection results for the 7 days tests are shown in Figure 3 where a confusion matrix
is presented. There is a predominant diagonal dark line, which represent the correct detections of
activities, but also some off-diagonal estimations that represent estimation errors.

Confusion matrix
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Figure 3. Confusion matrix.

The best performance (using as validation test the same logfiles used for trainnig) is an 83% of
true positives (in-diagonal estimates). When using the competition dataset with three extra days,
the performance dropped to a 60.5% percentage. These results are obtained activating all the different
event sensor streams (Binary, BLE, Floor, Acce). We observed an accumulative increased performance
when adding more sensor events together, being the Acce events the ones with less contribution.
Taking into account, the large number of different activities (24) in the dataset, and the generality and
simplified version of the algorithm, we believe that the results are good. As a future work we would
like to compare these results with other using more sophisticated approaches (Random forest, SVM,
etc.) with exactly the same dataset, in order to see the quality of the results.

6. Conclusions

In this short paper we have shown some partial details of the methods used to compete in
the UCAmI Cup. We proposed to use a naive Bayes implementation with emphasis on multi-type
event-driven location-aware activity recognition. Our method combined multiple events generated by
binary sensors fixed to everyday objects, a capacitive smart floor, the received signal strength (RSS)
from BLE beacons to a smart-watch and the sensed acceleration on the actor’s wrist. The method did
not used an explicit segmentation phase, it interprets the received events as soon as they are measured
and activity estimations are generated in real-time without any post-processing or time-reversal
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re-estimation. An activity prediction model is used in order to guess the more-likely next activity to
occur, and several measurement model are added-up in order to reinforce the believe in activities.
A maximum a posteriori decision rule is used to infer the most probable activity. The evaluation results
show an improved performance while adding new sensor type events to the activity engine estimator.
Accuracy results within the competition was just a 60.5% of true positives, which is an acceptable
figure taking into account the high number of different activities to classify (24 activities).
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