
proceedings

Proceedings

Human Activity Recognition through Weighted
Finite Automata †

Sergio Salomón 1,∗,‡ and Cristina Tîrnăucă 2,‡
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Abstract: This work addresses the problem of human activity identification in an ubiquitous
environment, where data is collected from a wide variety of sources. In our approach, after filtering
noisy sensor entries, we learn user’s behavioral patterns and activities’ sensor patterns through
the construction of weighted finite automata and regular expressions respectively, and infer
the inhabitant’s position for each activity through frequency distribution of floor sensor data.
Finally, we analyze the prediction results of this strategy, which obtains 90.65% accuracy for the
test data.

Keywords: human activity recognition; weighted finite automaton; regular expression;
pattern mining

1. Introduction

Human Activity Recognition (HAR) is an active research area in various fields (computer vision,
human computer interaction, ubiquitous computing and ambient intelligence), having important
applications to ambient assisted living, healthcare monitoring, surveillance systems for indoor and
outdoor activities, and tele-immersion applications [1].

Most of the competitions within the field are using either smart phone or smart watch data,
wearable sensors information or short videos, just like the state-of-the-art research [2]. The first
Ubiquitous Computing and Ambient Intelligence challenge (UCAmI Cup) has been launched as
an annual event in the context of the UCAmI Conference, and provides participants with the opportunity
to put their skills into action using an openly available HAR dataset assembled in the University of
Jaen’s Ambient Intelligence (UJAmI) SmartLab, through a set of multiple and heterogeneous sensors
deployed in the apartment’s different areas: lobby, living room, kitchen and bedroom with integrated
bathroom (more information on the lab’s webpage: http://ceatic.ujaen.es/ujami/en/smartlab).

The dataset records the activity carried out by a single male inhabitant during ten days, out of
which seven are used for training purposes and three for testing. Human-environment interactions
and the inhabitant’s actions are captured via four different data sources:

1. Event streams generated by 30 binary sensors (24 based on magnetic contact, four motion sensors
and two pressure sensors),

2. Spatial information from an intelligent floor with 40 modules, distributed in a matrix of four rows
and ten columns, each of them composed of eight sensor fields.
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3. Proximity information between a smart watch worn by an inhabitant and a set of 15 Bluetooth
Low Energy (BLE) beacons deployed in the UJAmI SmartLab,

4. Acceleration data from the same smart watch worn by the inhabitant.

The experiment consisted in a series of daily activities performed in a natural order from a total
of 24 different activity classes as presented in Table 1 (the frequency of each activity in the training set
is also included in the table).

Table 1. Activities recorded in the dataset.

Activity’s ID Activity’s Name Frequency

Act01 Take medication 7
Act02 Prepare breakfast 7
Act03 Prepare lunch 6
Act04 Prepare dinner 7
Act05 Breakfast 7
Act06 Lunch 6
Act07 Dinner 7
Act08 Eat a snack 5
Act09 Watch TV 6
Act10 Enter the SmartLab 12
Act11 Play a videogame 1
Act12 Relax on the sofa 1
Act13 Leave the SmarLab 9
Act14 Visit in the SmartLab 1
Act15 Put waste in the bin 11
Act16 Wash hands 6
Act17 Brush teeth 21
Act18 Use the toilet 10
Act19 Wash dishes 2
Act20 Put washing into the washing machine 6
Act21 Work at the table 2
Act22 Dressing 15
Act23 Go to the bed 7
Act24 Wake up 7

In the research literature, most of the approaches for activity recognition use supervised machine
learning techniques, as stated in [3]. Stiefmeier et al. [4] use Hidden Markov Models and Mahalanobis
distance based classifiers to identify different assembly and maintenance activities from a combination
of motion sensor data and hands tracking data. Berchtold et al. [5] apply fuzzy inference based models
in an online learning setting to perform classification of personalizable movement activities using
phone accelerometer data and some user feedback. Sefen et al. [6] publish a comparison between
several classification algorithms, like Support Vector Machines, Decision Trees, Naive Bayes and
k-Nearest Neighbors, to perform real-time identification of fitness exercises. Hammerla et al. [7]
study and compare Deep Learning models (Deep Feed-Forward, Convolutional and Recurrent Neural
Networks) using movement data from wearable sensors.

There are also less common strategies using unsupervised and semi-supervised learning.
Huynh et al. [8] use probabilistic topic models to learn activity patterns from wearable sensor data
and recognize daily routines as combinations of those patterns. Stikic and Schiele [3] present
a semi-supervised method to recognize activities in partially labeled data using multi-instance learning
and Support Vector Machines with the aim of automating the process of labeling. Kwon et al. [9]
compare k-Means, mixture of Gaussian and DBSCAN clustering methods to distinguish activities in
unlabelled data and unknown number of activities. The reader can find more extensive information
about other applied methods in [10–13].

Because of the nature of the dataset under study, our approach is based on finite states machines,
regular expressions and pattern recognition. We have divided the process of HAR into three main
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steps. In the first one, we filter the data to remove noise (Section 2). The second step involves training
the model with data from the seven available days (Section 3). Finally, we use this model to predict
activities (Section 4) and discuss the results obtained for the test set (Section 5). In Section 6 we detail the
conclusions drawn after seeing the correct predictions, and we describe some possible improvements
that would allow our algorithm to perform better.

2. Filtering Step

Going through the training data, one can easily spot sensor data that cannot possibly be accurate.
For example, the floor capacitance data indicating that the user was “jumping” from the bedroom to
the kitchen and back in less than one second. After removing these abnormal entries, we went on to
investigate another, more subtle, kind of noise that involved coordinating the sensors dataset with
the floor dataset. Due to basic physics laws, it is impossible for one person to open the Pajamas drawer
(C13) while being in the kitchen. In order to avoid these anomalies, we generated a map with those
tiles that detected movement within a two seconds window for the magnetic contact and pressure
sensors for both training and test datasets, and we discarded those entries in the datasets that were
obviously wrong.

3. Training Step

The training step can be divided into two main parts. First, we describe the training data with
the help of Weighted Finite Automata (see [14] for a formal definition): we train one automaton for
the morning activities, another one for the afternoon activities and a last one for the evening. In this
phase we also compute a table of activities that includes all available information per activity: sensors,
proximity and floor (we decided to exclude the acceleration information; also, proximity turned out to
be noisy and little discriminative, so we could not really use it).

To construct the Type A automaton, we must first describe the flow of morning activities for any
given day. For example, let us consider the activities recorded by the user on 31st of October in the
morning, represented in Table 2.

Table 2. Activities of the user.

Type: A, Date: 31 October

Act24 11:12:38 11:15:25
Act18 11:15:51 11:16:37
Act16 11:17:04 11:18:06
Act02 11:18:36 11:21:54
Act05 11:22:12 11:24:59
Act17 11:25:55 11:27:06
Act22 11:27:25 11:29:01
Act13 11:29:24 11:30:09

Then one can build the following graph, in which each node is an activity and the edges are
labeled either with the number of seconds spent doing that particular activity or with the time elapsed
between two different activities (see Figure 1).

Act24 Act18 Act16 Act02 Act05 Act17 Act22 Act13

167

26

46

27

62

30

198

18

167

56

71

19

96

23

45

Figure 1. User: Mario, Date: 31 October, Type: A.
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Combining activities for all available days we obtain a weighted finite automaton in which the
weights indicate how many times that particular path was taken, expressed as percentage (see Figure 2).

Act24 Act18 Act16 Act02 Act05 Act17 Act21 Act22 Act13

Act20

53:202

4/7 4/4 6/6 7/7 7/7 1/7 1/1 6/7

1/72/7

1/7
6/7

1/1

Figure 2. User: Mario, Type: A.

Apart from these probabilities, we also maintain information about the minimum and maximum
time spent doing each of the activities in this activity flow, as well as minimum/maximum time
between two different activities (for a better readability, we chose to depict this information graphically
only for one node, namely, the one representing Activity 24). Moreover, each state has a “begin” and
an “end” probability (the probability of starting/finishing the morning with that particular activity).
We draw in red those states that have a “begin” probability greater than zero and in gray those with
non-zero “end” probabilities. Note that in the morning, the user starts his routine every day in the
same way (with Activity 24: Wake up), but it may end it up either working at the table (Activity 21) or
leaving the SmartLab (Activity 13).

The afternoon automaton is represented in Figure 3. One can see that it is more complex than the
morning one, and also that there are activities that may interrupt the normal flow, like for example,
Activity 14: Visit in the SmartLab. The user may start the afternoon session either with Activity 10:
Enter the SmartLab or with Activity 22: Dressing. The last activity in the afternoon is either Activity 15:
Put waste in the bin (four times) or Activity 13: Leave the SmarLab (the other three times).

Finally, the evening automaton is represented in Figure 4. In this time segment, the user always
started his routine with Activity 10: Enter the SmartLab and ended it with Activity 23: Go to the bed.

As we have already mentioned, we also stored, for each activity performed, the stream of
sensor readings that occurred during that particular activity. In the second part of the training
phase, we described by means of a regular expression each of the twenty four activities. This was
a semi-supervised process. First, we learned an automaton for each activity based on the examples we
had, then we converted it into a regular expression, which was eventually hand-tweaked to be more or
less general, depending on our perception of how each activity should be performed.

For example, the activity Put waste in the bin (Act15), which appeared eleven times in the training
set, had the recordings listed in Figure 5 (left); its Prefix Tree Acceptor is depicted in Figure 5 (center),
and the minimal Deterministic Finite Automaton learned by the state merging algorithm—we use
a variant of the RPNI (Regular Positive and Negative Information) algorithm [15]—is represented in
Figure 5 (right).
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Figure 3. User: Mario, Type: B.
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Figure 4. User: Mario, Type: C.

[ M01 M01 ]
[ C01 C01 C08 C08 M01 M01 ]
[ C08 C08 M01 M01 ]
[ C01 C08 C08 M01 M01 ]
[ M01 M01 ]
[ M01 M01 ]
[ C01 M01 M01 ]
[ C08 C08 M01 M01 ]
[ C08 C08 M01 M01 ]
[ C08 C08 M01 M01 ]
[ C08 C08 M01 M01 ]

M 01
C
08

C
01

M 01
C
08

M
01

M
01

C
08

C
08

M
01

M
01

M 01

M 01

C
01

C
08

C
08

M
01

M
01

M
01

C 01
, C 08

M
01

Figure 5. Put waste in the bin (Act15).
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The regular expression for Put waste in the bin (Act15) is therefore (C01|C08)
∗M01M01. Note that

there are only magnetic contact sensors listed in the recordings for this activity, and no motion sensor
seems to be active. The reason is that we have decided to ignore those entries due to their high level of
noise. We only include them whenever there is no other indication. The regular expressions obtained
for each activity are listed in Table 3.

Table 3. Activities’ regular expressions.

Without SM Sensors

Act01 D+
04(C01|C05|D04|D05)

∗ Act15 (C01|C08)
∗M+

01
Act02 (D01|D02|D04|D10|H01)

+ Act16 C+
09

Act03 (C04|D01|D02|D04|D08|D10)
+ Act17 C+

09
Act04 (C04|D01|D02|D04|D08|D10)

+ Act18 (C10|D07)
+(C08|C10|D07)

∗

Act08 (C02|D10)
+ Act19 D+

05
Act09 (TV0|S09)

∗TV0 Act20 D09(C12|D09)
∗

Act10 M+
01 Act22 D03(C12|C13|D03)

∗

Act11 (TV0C07|C07TV0)S∗09(TV0C07|C07TV0) Act23 C14(C13|C14)
+

Act13 M+
01 Act24 C+

14
Act14 M+

01

With SM Sensors

Act05 SM+
1 Act12 (S09|SM4|SM5)

∗SM5(S09|SM4|SM5)
∗

Act06 SM+
1 Act21 SM+

4
Act07 SM+

1

Finally, in this step we also elaborate a “map” of possible locations for each activity (using the
floor capacitance information), where the radius of each point on the map depends on the occurrence
frequency of that respective tile within that particular activity (we include these maps in the
Appendix A of this document as Figure A1).

The set of tiles obtained for each activity will be used in the very end to fine-tune the time intervals
in which each activity took place. Once we have all this information gathered, we can proceed to
process the test set.

4. Prediction Step

The prediction step is also divided into two main parts. In the first one, the algorithm takes as input
the sensors file of a specific routine for one particular day (for example, 2017-11-09-A-sensors.csv),
and the weighted finite automaton generated for that particular routine (in this example, the one
represented in Figure 2). The sensors files are mapped into the respective sequence of sensors
(SM4SM4C14C09SM4SM4C09C09C09SM1 . . .). We have implemented a filtering function that erases
all motion sensors (C14C09C09C09C09 . . .). We use the unfiltered string only when necessary (basically,
when the next action predicted by the automaton is Act05, Act06, Act07, Act12 or Act21), always
making sure to keep track of changes in both strings.

The algorithm always tries to match first the action that has the highest probability. This holds also
for the very first action, although in the morning there was only one possibility (in our example, Act24,
its regular expression being C+

14). Since we have a match, we save this state as the first state of the
automaton, and we update both the filtered (C09C09C09C09 . . .) and unfiltered (C09SM4SM4C09 . . .)
version of the sequence of sensors by erasing the matched string. The transition between this
activity and itself will be labeled with provisional initial and final times, corresponding to the
timestamps recorded for the first SM4 and the last C14 (in this case there is only one symbol, but
in general the pattern may contain a whole sequence of labels), respectively. These times will be
updated once we build all states and transitions of the automaton, based on the information from
2017-11-09-A-floor.csv.
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The algorithm proceeds by trying to match all states with non-zero probabilities, checking first
the ones with higher values (following the example, the algorithm would try first Act18, then Act16,
and only if none of them matches, Act02). In this case the winner is Act16 (regular expression: C+

09) since
Act18 (regular expression: (C10|D07)

+(C08|C10|D07)
∗) does not match the beginning of the filtered

sequence of sensors.
Whenever the list of possible next states with non-zero transition probabilities is exhausted

without a match, the algorithm tries, in order, what we call “unforeseen events”. These are events that
can occur at any time, and they were manually selected: Act11 (Play a videogame), Act09 (Watch TV),
Act14 (Visit in the SmartLab), Act18 (Use the toilet) and Act12 (Relax on the sofa). The order in which they
are processed is very important in this case. Consider for example the following sequence of sensors:
TV0C07S09S09S09TV0C07 . . . Both regular expressions for Act11: (TV0C07|C07TV0)S∗09(TV0C07|C07TV0)

and Act09: (TV0|S09)
∗TV0 match the beginning of this particular string, so if the algorithm first tries

with Act09, it would incorrectly predict that the user is watching TV, while the presence of the Remote
XBOX (C07) clearly indicates that the user is playing a videogame.

The next state that the algorithm tries to match after an “unforseen” event is the one that the user
was performing before the interruption. If there is no match, the algorithm tries with the next activities
in the workflow, starting with the most probable one. The output of this first part of the algorithm
for the running example is represented by the automaton from Figure 6. One can see that after Act21,
the user always performed Act22 (actually, there was only one case). But, the sequence of sensors to be
matched is M01SM4M01SM4SM4SM4 . . ., and Act22 always starts with D03 (see its regular expression
in Table 3). Since neither Act11 nor Act09 match, the algorithm proceeds to check Act14 and succeeds
(for this particular activity, the filtered version of the sequence of sensors is used). Since the string
left after removing the identified pattern (SM4SM4SM4 . . .) does match Act21, this will be the next
predicted activity. If this was not the case, the algorithm would have tried with Act22.

Finally, the second part of the algorithm takes as input the automaton just produced and the
corresponding floor file (2017-11-09-A-floor.csv). Each activity in the activity flow comes with
some provisional initial and final times. The algorithm proceeds by updating these times based on the
tiles “allowed” for that particular activity (recall that in the training phase we determine which are the
possible tiles for each activity).

Act24 Act16 Act02 Act05 Act17 Act21 Act14 Act21 Act22 Act13

12:03:54|12:04:34 12:05:08|12:06:00 12:06:27|12:08:14 12:08:18|12:13:07 12:14:03|12:14:39 12:15:11|12:18:19 12:18:28|12:18:37 12:18:40|12:22:22 12:23:05|12:23:48 12:23:52|12:25:35

Figure 6. User: Mario, Date: 19 December, Type: A.

5. Performance Evaluation

The main goal of the 1st UCAmI Cup was to achieve the highest possible level of performance,
and accuracy was the metric chosen for assessing the quality of a given solution. Our software was able
to correctly identify 485 out of 535 activities, corresponding to an overall 90.65% accuracy. In Table 4 we
offer detailed information about the performance obtained by our method for each day and segment
of the testing set.

With one notable exception, to which we will return in Section 6, our proposed solution achieves
accuracy rates between 84.06% (the evening of day 3) and 96.61% (same day, morning segment).
Going through the file of results and comparing it to what our software produced, we could see that
the vast majority of the errors came from having incorrectly predicted starting and ending times
for our actions. There are actually only two exceptions. In one case (evening of day 1), the labeled
dataset says that after dressing up (Activity 22), the inhabitant interrupted Activity 23: Go to bed to
use the toilet (Activity 18): Act22-Act23-Act18-Act23, while our software found a slightly different
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sequence of activities: Act22-Idle-Act18-Act23. In the other case (afternoon of day 3), apart from
a faulty transcription of the output of the algorithm into the excel file, both the order and the timing of
half of the activities detected was completely wrong.

Table 4. Accuracy of our solution for each day and segment of the testing set.

Day 1 Day 2 Day 3

Morning 43/49 (87.76%) 60/65 (92.31%) 57/59 (96.61%)
Afternoon 77/81 (95.06%) 75/79 (94.94%) 6/13 (46.15%)
Evening 57/65 (87.69%) 52/55 (94.55%) 58/69 (84.06%)

We would like to point out that the measure used to evaluate solutions was, in our opinion,
biased. In order to justify our claim, let us clarify the way in which the final score was calculated. First,
each segment of the three testing days was divided into 30 s time slots. Leaving apart technical details,
participants were basically asked to fill in the list of activities (if any) that took place in each of these
30 s time slots. But, the evaluation measure only considers the first activity, adding one point to the
total count if this activity was in the list of “correct” activities, and zero otherwise. Of course, a correct
solution would always get one point. Unfortunately, incomplete solutions are somewhat arbitrarily
rated, as we shall shortly see.

Take for example the case in which the solution given states that during a particular time slot T0,
ActX ends and ActY starts (see Table 5). If the labeled test confirms that ActX ends indeed during time
slot T0 but ActY does not yet start (Case A), the event gets evaluated as correct, whereas if, according
to the labeled test set, ActY did indeed start during time slot T0, but activity ActX ended in a previous
time slot (Case B), this event is classified as incorrect. So, in this case, it is no problem if the participant’s
solution states that a certain activity started a bit earlier (Case A, ActY), but the answer is completely
invalidated if a previous activity (ActX) enters, even with only one second, into the time slot that
should have been allocated to the next activity (ActY) alone (Case B).

Table 5. Time slots evaluation example.

Solution Labeled Test Set (Case A) Labeled Test Set (Case B)

ActX ActY ActX ActY ActX ActY

Time slot T0 TRUE TRUE TRUE FALSE FALSE TRUE
Time slot T1 TRUE FALSE TRUE TRUE FALSE FALSE

The same type of asymmetry in the evaluation process also appears in the following hypothetical
situation of time slot T1. If the solution states that ActY starts later than it is supposed to be (Case A),
there is no problem, the event still gets one point for correctly identifying ActX ending in T1. As in the
case of the hypothetical situation described for Case B of time slot T0, the fact that ActX takes longer
than it should, would be in this case penalized in the evaluation process (Case B of time slot T1).

We are aware that having to evaluate a continuous process from a discrete perspective involves
by default losing precision, and that there is no perfect way around it. Nevertheless, we believe that
one way to address the above mentioned inconsistencies is to consider as being correct only those
time slots that coincide entirely (i.e., the list of activities returned by the solution in a given time slot is
exactly the same as the list of activities in the labeled test set). Our solution would get, in this case,
an overall accuracy of 87.10% (466 out of 535), with the situation per segment and day described in
Table 6.
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Table 6. Revisited accuracy of our solution for each day and segment of the testing set.

Day 1 Day 2 Day 3

Morning 40/49 (81.63%) 58/65 (89.23%) 54/59 (91.53%)
Afternoon 75/81 (92.59%) 74/79 (93.67%) 6/13 (46.15%)
Evening 54/65 (83.08%) 50/55 (90.91%) 55/69 (79.71%)

On the other hand, since for each time slot Ti, there is a (possibly empty) list Li of “right” or
“correct” activities and a list L′i (again, possibly empty) of activities retrieved by the participant’s
solution, another possibility to evaluate the goodness of the algorithm’s output is to resort to computing
true positives (activities that Li and L′i have in common), false positives (activities in L′i that do not
appear in Li) and false negatives (activities in Li that are not included in L′i), similar to what it is done
in Information Retrieval. Then, one can compute an overall precision (how many of the activities
found by the algorithm did indeed take place?) and recall (how many of the activities that have taken
place were encountered by the algorithm?), formally defined below:

Precision =
∑i |Li ∩ L′i|

∑i |L′i|

Recall =
∑i |Li ∩ L′i|

∑i |Li|
With these formulas, our solution obtains 90.72% precision (489 out of 539) and 87.95% recall

(489 out of 556), amounting to a reasonably high F-measure of 0.89.

6. Conclusions and Future Work

We have implemented a Human Activity Recognizer that achieved an accuracy rate of 90.65%.
Some of our mistakes are human errors introduced during the transcription process between the
output file returned by our program and the csv file with results, which was done manually due to
time limitations (for example, we typed Act16 instead of Act17 in 2017-11-21-B). An automatic process
would therefore eliminate this problem. In other cases, we believe they are due to incorrect labeling of
the test dataset. For example, for the same file, the user is supposed to be brushing his teeth between
16:10:30 and 16:12:59. Nevertheless, during that time the user is not even near the sink (according to
the floor information), nor does he open or close the water tap until 16:15:34. Moreover, the bathroom
motion sensor only detects movement starting at 16:15:28. Actually, the first entry in the floor file is at
16:12:51, and the first from the sensors file is at 16:13:13. And finally, there are also errors where the
only ones to blame are the designers of the algorithm. We hope that by investigating the mistakes we
have made, we can come up with a better software that could scale up to an arbitrary number of users
and a bigger number of activities.

Another improvement that we envision is allowing more human intervention into the process.
For the moment, whenever an action is longer or shorter than it is supposed to be (based on the
training data), the software prints a message with this info but takes no further action. We believe that
being able to stop the process when something seems to be wrong and restart it after incorporating the
expert’s decision could greatly improve accuracy rates.
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Abbreviations

The following abbreviations are used in this manuscript:

HAR Human Activity Recognition
UCAmI Ubiquitous Computing and Ambient Intelligence
UJAmI University of Jaen Ambient Intelligence
BLE Bluetooth Low Energy
DBSCAN Density Based Spatial Clustering of Applications with Noise
RPNI Regular Positive and Negative Information
MICINN Ministerio de Ciencia e Innovación
SODERCAN Sociedad para el Desarrollo Regional de Cantabria

Appendix A

Figure A1. Activity tiles.
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